Stochastic uncertainty in CCSL

Pavlo Tokariev

Université Cote d'Azur, Inria, CNRS, i3S
Sophia Antipolis, France

Tuesday 25th November, 2025

UNVERSITE 503 Buee e @ 039135 @nacsov

rg m
ité

Motivation

® Uncertainty is a state of partial knowledge
® |mplementation is uncertain

m From component production
m From finite precision of testing
m From environment

Model and development can be uncertain

m Not every requirement is known
m If a requirement is not yet precise
m By design: HAL4SDV

® Proving properties regardless of uncertainty is crucial

® Thus capturing the uncertainty is important

The Clock Constraint Specification Language (CCSL) [6, 2]

A language that specifies the temporal behaviour of a system

Variables represent logical clocks

Constraints are relations between the logical clocks

Logical clock is a possibly infinite totally ordered sequence of time instants
c=¢g<qg<...,cel
A time structure (/,=/,<;)

m A solution that satisfies the constraints

m Commonly, a schedule/trace, a sequence of steps, totally ordering the instants
The problem

m For a specification, there is a set of valid schedules
m Find out if it is empty

Example: precedence

(I,=;,<))E a<b & Vi:a;< b
constraint semantics

step 1step 2 step 3 step 4

[]
®
v
]
[]
[]

\4

L 4 > b @ @ >
4 i+1
(a) Tick relations (b) Solution 1
step 1step2 step3 step4 step 1 step 2 step 3
@ @ > a @ @ >

®
[]
\
=
[]
[]

(c) Solution 2 (d) Solution 3

A\ 4

Uncertainty so far

® CCSL already can express uncertainty

m By missing constraints
m Steps have unknown width
m Using auxiliary constructions

® In case of quantitative time ("delay event by 2.1ms") — complicated to solve

® With constraints of RTCCSL it is easier and simpler to express quantitative time with its
uncertainty

Real-Time CCSL [9, 7]

® Expresses quantitative time and its uncertainty

® Adds 3 new constraints: real-time delay, periodic with jitter or drift
® |nstants are considered to be exactly Q

® For example, real-time delay:

Vx <y €Qso:(l,=,<))Fb=delayaby[x,y] & Vi:b;—a; €[x,y]
%—J « v J - v J

bounds constraint semantics
a; Qi1
*—© > a
l
] b

\ 4

Modular CCSL [7]

® Based on subspecification relation €
m Inclusion of language projection: A € BdéfﬂC(A)nC(B)(A) € Neanea)(B)
m Simulation relation on common subset of clocks

Module is defined as tuple (A, S, G)
m Assumption, Structure, Guarantee

m The module "body" BEAAS
m It is valid when Ae Be G

Modules can be chained

Nearly not implemented right now

m Only certain types of specifications are simple to check
m Still useful as separation of concerns

Contribution

* Specification defines what is possible, not what is likely to happen

® Stochastic constraints guide the simulation of uncertain specification to the more probable
trace

® Traces can be processed to extract representative system metrics like response time using
functional chain description

Stochastic extension

® Prerequisite: uncertainty is detached from constraints

In real-time delay:

Yv=(vwv...),v€Q:(l,=,<)Fb=delayabyv < Vi:b—a; =y
| — |

constraint semantics

m Periodic, logical delay, subclocking are modified this way too
m Additional object in a specification: rational or integer sequence variable

® Uncertainty is separately specified on the sequence variables

Vx=(xox1...),x,c€EQ:xMc & Vi:X,-NQC

Stochastic constraints define how the elements are distributed
m Implemented few classic distributions, normal, exponential, uniform
® continuously distributed x as normal (mu, sigma)

Vi:x; ~ N(p,o)

m Uncertainty bounds + distribution result in truncated distribution

Limitations

® The distributions need to be independent and stable in their domain:

m No double distribution on sequences
m Bounds should be present and not modified
m Both should be placed in assumptions
m Assumptions guarantee that nothing can interfere with the distribution
® Variables cannot be used twice in different constraints
m Otherwise, an arbitrary dependency between past and future quantitative time
m Requires that sequences have to be remembered as the constraint state

e Comparison between sequences is not allowed

Simulation

® Behaviour exploration is prioritized

® When distribution is unspecified, some value is picked, uniformly, but not in the original
interval

e b e
—Ei:.:kl—»b —H:;:H-»b R —

P(anb)=0

® With stochastic constraints: mix between event-driven simulation and behaviour exploration

Application

* In HAL4SDV project [8]
m A DSL? that describes a Service-oriented
architecture in a Software Defined Vehicle
m Translates into presented language and
simulates” the system
m So far described a version of Autonomous
Emergency Braking System
® ABZ use cases: landing gear and
mechanical lung ventilator

“https://github.com/jdeantoni/
SoftwareDefinedVehicleModelinglLanguage
®https://github.com/PaulRaUnite/mrtccsl

- -
—E AEB controller F]—

B

missed 3 I _

missed 5 N

https://github.com/jdeantoni/SoftwareDefinedVehicleModelingLanguage
https://github.com/jdeantoni/SoftwareDefinedVehicleModelingLanguage

Related works

* Network of Stochastic Timed Automata [1]

m Synchronization: broadcast vs rendez-vous
m Completely independent automata vs only stochastic part
m Additive vs subtractive description

* Probabilistic CCSL [3]
m Defines probability of an event in a step
» Explicitly
» Transitively through expression constraints
m Redefines constraints
m Only makes sense when step is fixed size (hard requirement)

* PrCCSL [5] and PrCCSL™ [4]

m Expresses uncertainty about the constraint itself, not time or parameters
m No recovery strategies, so a violation invalidates the whole trace

Conclusion and future work

® Conceptualized the extension that

m Enriches uncertainty in constraints with stochastic aspect

m Helps to guide the simulation into more "real" and fair traces
¢ Almost fully implemented

m Lacking reencoding of constraints related to integer sequences
® Future work

m Uncertain coincidence as a separate constraint

» Rational instants are too precise
» Previously “indeterminate size” steps were uncertain

m Extraction of specification distributions

References |

[1]

2]
[3]

Patricia Bouyer et al. “Compositional Design of Stochastic Timed Automata”. In: Computer
Science — Theory and Applications. Ed. by Alexander S. Kulikov and Gerhard J. Woeginger.
Vol. 9691. Cham: Springer International Publishing, 2016, pp. 117-130. ISBN:
978-3-319-34170-5 978-3-319-34171-2. DOIL: 10.1007/978-3-319-34171-2_9. URL:
http://link.springer.com/10.1007/978-3-319-34171-2_9.

Julien Deantoni, Charles André, and Régis Gascon. “CCSL Denotational Semantics”. report.
Inria, Nov. 13, 2014, p. 29. URL: https://hal.inria.fr/hal-01082274.

Dehui Du et al. “pCCSL: A Stochastic Extension to MARTE/CCSL for Modeling
Uncertainty in Cyber Physical Systems". In: Science of Computer Programming 166

(Nov. 15, 2018), pp. 71-88. 1SSN: 0167-6423. DOI: 10.1016/j.scico.2018.05.005. URL:
https://www.sciencedirect.com/science/article/pii/S0167642318301916.

15/17

https://doi.org/10.1007/978-3-319-34171-2_9
http://link.springer.com/10.1007/978-3-319-34171-2_9
https://hal.inria.fr/hal-01082274
https://doi.org/10.1016/j.scico.2018.05.005
https://www.sciencedirect.com/science/article/pii/S0167642318301916

References |l

[4]

[5]

[6]

Li Huang, Tian Liang, and Eun-Young Kang. “Formal Verification of Dynamic and
Stochastic Behaviors for Automotive Systems”. In: 2019 24th International Conference on
Engineering of Complex Computer Systems (ICECCS). 2019 24th International Conference
on Engineering of Complex Computer Systems (ICECCS). Nov. 2019, pp. 11-20. DOTI:
10.1109/ICECCS.2019.00009. URL:
https://ieeexplore.ieee.org/document/8882750.

Eun-Young Kang, Dongrui Mu, and Li Huang. “Probabilistic Verification of Timing
Constraints in Automotive Systems Using UPPAAL-SMC". In: Integrated Formal Methods.
Ed. by Carlo A. Furia and Kirsten Winter. Cham: Springer International Publishing, 2018,
pp. 236—254. 1SBN: 978-3-319-98938-9. DOI: 10.1007/978-3-319-98938-9_14.

Frédéric Mallet. “Clock Constraint Specification Language: Specifying Clock Constraints
with UML/MARTE". In: Innovations in Systems and Software Engineering 4 (Oct. 1,
2008), pp. 309-314. por: 10/dn4dptd.

https://doi.org/10.1109/ICECCS.2019.00009
https://ieeexplore.ieee.org/document/8882750
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10/dn4ptd

References ||

[7]

[8]

[9]

Pavlo Tokariev. “Modular Real-Time Clock Constraint Specification Language”’. PhD thesis.
Université Céte d'Azur, Dec. 13, 2024. URL:
https://theses.hal.science/tel-04933243.

Pavlo Tokariev, Irman Fagrizal, and Julien Deantoni. “Understandable Timing Analysis of
Service-Oriented Architecture Components in Software-Defined Vehicle”. In:
Communications in Computer and Information Science. CCIS. Proceedings of the 20th Int.
Conf. on Information and Communication Technologies in Education, Research, and
Industrial Applications (ICTERI-2025). Nice, France, Sept. 2025. URL:
https://inria.hal.science/hal-05224373.

Pavlo Tokariev and Frédéric Mallet. “Real-Time CCSL: Application to the Mechanical Lung
Ventilator”. In: ABZ 2024 — 10th International Conference on Rigorous State Based
Methods. Vol. LNCS-14759. Springer, June 25, 2024, p. 289. DOI:
10.1007/978-3-031-63790-2_24. URL: https://inria.hal.science/hal-04639949.

https://theses.hal.science/tel-04933243
https://inria.hal.science/hal-05224373
https://doi.org/10.1007/978-3-031-63790-2_24
https://inria.hal.science/hal-04639949

	References

