

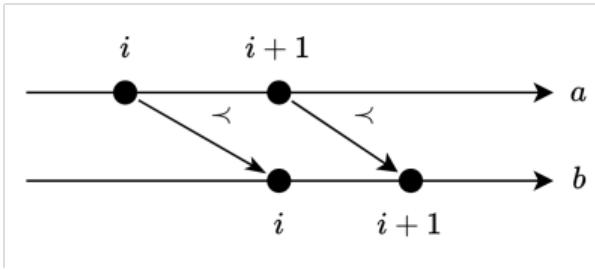
Stochastic uncertainty in CCSL

Pavlo Tokarev

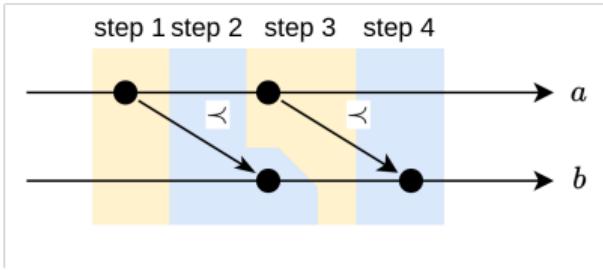
Université Côte d'Azur, Inria, CNRS, i3S
Sophia Antipolis, France

Tuesday 25th November, 2025

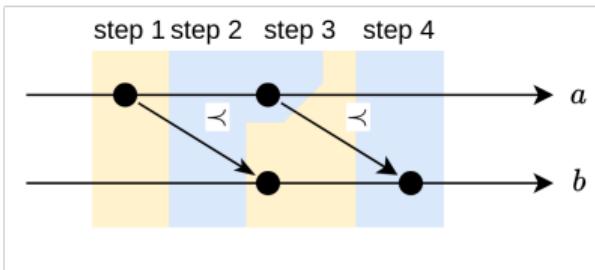
Motivation

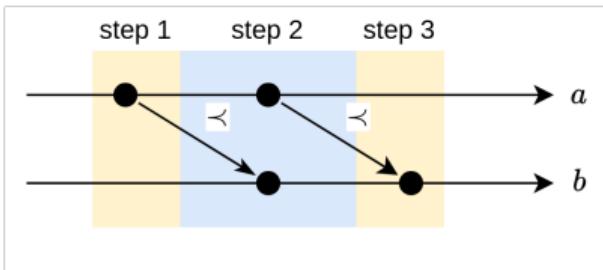

- Uncertainty is a state of partial knowledge
- Implementation is uncertain
 - From component production
 - From finite precision of testing
 - From environment
- Model and development can be uncertain
 - Not every requirement is known
 - If a requirement is not yet precise
 - By design: HAL4SDV
- Proving properties regardless of uncertainty is crucial
- Thus capturing the uncertainty is important

The Clock Constraint Specification Language (CCSL) [6, 2]


- A language that specifies the temporal behaviour of a system
- Variables represent logical clocks
- Constraints are relations between the logical clocks
- Logical clock is a possibly infinite totally ordered sequence of time instants
 $c = c_0 < c_1 < \dots, c_i \in I$
- A time structure $\langle I, \equiv_I, <_I \rangle$
 - A solution that satisfies the constraints
 - Commonly, a schedule/trace, a sequence of steps, totally ordering the instants
- The problem
 - For a specification, there is a set of valid schedules
 - Find out if it is empty

Example: precedence

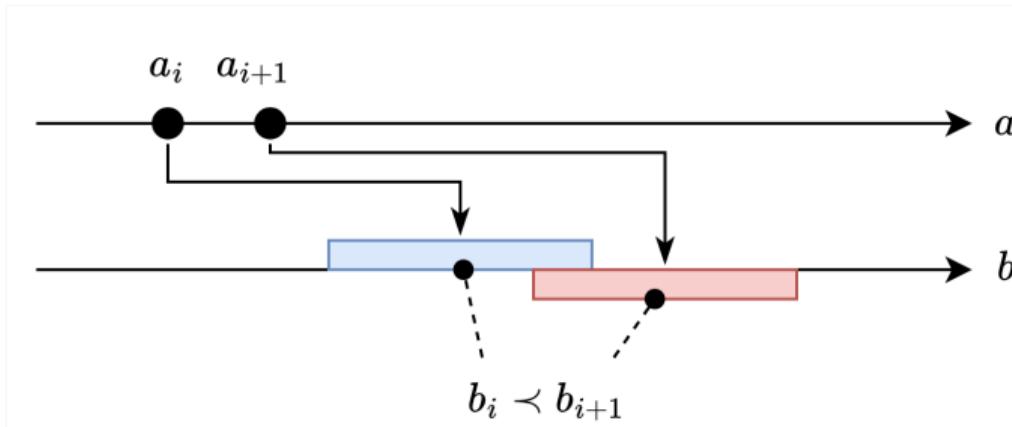

$$\langle I, \equiv_I, \prec_I \rangle \models \underbrace{a \prec b}_{\text{constraint}} \iff \underbrace{\forall i : a_i \prec_I b_i}_{\text{semantics}}$$


(a) Tick relations

(b) Solution 1

(c) Solution 2

(d) Solution 3


Uncertainty so far

- CCSL already can express uncertainty
 - By missing constraints
 - Steps have unknown width
 - Using auxiliary constructions
- In case of quantitative time ("delay event by 2.1ms") — complicated to solve
- With constraints of RTCCSL it is easier and simpler to express quantitative time with its uncertainty

Real-Time CCSL [9, 7]

- Expresses quantitative time and its uncertainty
- Adds 3 new constraints: real-time delay, periodic with jitter or drift
- Instants are considered to be exactly \mathbb{Q}
- For example, real-time delay:

$$\underbrace{\forall x \leq y \in \mathbb{Q}_{\geq 0} : \langle I, \equiv_I, \prec_I \rangle \models b = \text{delay } a \text{ by } [x, y]}_{\text{bounds}} \iff \underbrace{\forall i : b_i - a_i \in [x, y]}_{\text{constraint}} \underbrace{\text{semantics}}_{\text{semantics}}$$

Modular CCSL [7]

- Based on subspecification relation \in
 - Inclusion of language projection: $A \in B \stackrel{\text{def}}{=} \Pi_{C(A) \cap C(B)}(A) \subseteq \Pi_{C(A) \cap C(B)}(B)$
 - Simulation relation on common subset of clocks
- Module is defined as tuple $\langle A, S, G \rangle$
 - **A**ssumption, **S**tructure, **G**uarantee
 - The module "body" $B \stackrel{\text{def}}{=} A \wedge S$
 - It is valid when $A \in B \in G$
- Modules can be chained
- Nearly not implemented right now
 - Only certain types of specifications are simple to check
 - Still useful as separation of concerns

Contribution

- Specification defines what is possible, not what is likely to happen
- Stochastic constraints guide the simulation of uncertain specification to the more probable trace
- Traces can be processed to extract representative system metrics like response time using functional chain description

Stochastic extension

- Prerequisite: uncertainty is detached from constraints
- In real-time delay:

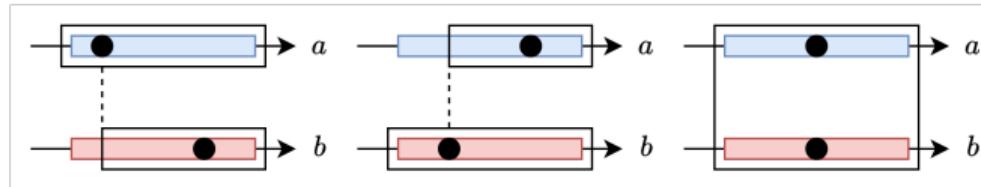
$$\forall v = (v_0 v_1 \dots), v_i \in \mathbb{Q} : \langle I, \equiv_I, \prec_I \rangle \models \underbrace{b = \text{delay } a \text{ by } v}_{\text{constraint}} \iff \underbrace{\forall i : b_i - a_i = v_i}_{\text{semantics}}$$

- Periodic, logical delay, subclocking are modified this way too
- Additional object in a specification: rational or integer sequence variable
- Uncertainty is separately specified on the sequence variables

$$\forall x = (x_0 x_1 \dots), x_i, c \in \mathbb{Q} : x \bowtie c \iff \forall i : x_i \bowtie^{\mathbb{Q}} c$$

- Stochastic constraints define how the elements are distributed
 - Implemented few classic distributions, normal, exponential, uniform
 - continuously distributed x as normal (μ , σ)

$$\forall i : x_i \sim N(\mu, \sigma)$$


- Uncertainty bounds + distribution result in truncated distribution

Limitations

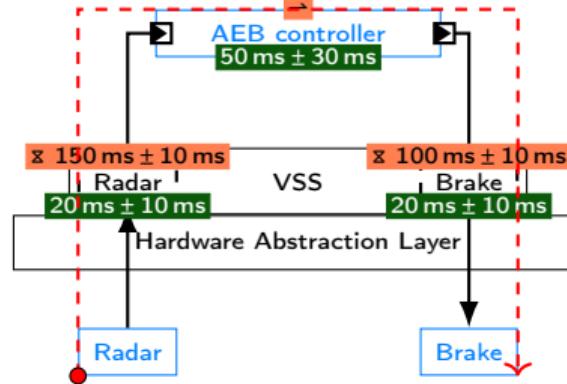
- The distributions need to be independent and stable in their domain:
 - No double distribution on sequences
 - Bounds should be present and not modified
 - Both should be placed in assumptions
 - Assumptions guarantee that nothing can interfere with the distribution
- Variables cannot be used twice in different constraints
 - Otherwise, an arbitrary dependency between past and future quantitative time
 - Requires that sequences have to be remembered as the constraint state
- Comparison between sequences is not allowed

Simulation

- Behaviour exploration is prioritized
- When distribution is unspecified, some value is picked, uniformly, but **not** in the original interval

$$P(a \wedge b) = 0$$

- With stochastic constraints: mix between event-driven simulation and behaviour exploration


Application

- In HAL4SDV project [8]
 - A DSL^a that describes a Service-oriented architecture in a Software Defined Vehicle
 - Translates into presented language and simulates^b the system
 - So far described a version of Autonomous Emergency Braking System
- ABZ use cases: landing gear and mechanical lung ventilator

^a<https://github.com/jdeantoni/SoftwareDefinedVehicleModelingLanguage>

^b<https://github.com/PaulRaUnite/mrtccsl>

Related works

- Network of Stochastic Timed Automata [1]
 - Synchronization: broadcast vs rendez-vous
 - Completely independent automata vs only stochastic part
 - Additive vs subtractive description
- Probabilistic CCSL [3]
 - Defines probability of an event in a step
 - ▶ Explicitly
 - ▶ Transitively through expression constraints
 - Redefines constraints
 - Only makes sense when step is fixed size (hard requirement)
- PrCCSL [5] and PrCCSL* [4]
 - Expresses uncertainty about the constraint itself, not time or parameters
 - No recovery strategies, so a violation invalidates the whole trace

Conclusion and future work

- Conceptualized the extension that
 - Enriches uncertainty in constraints with stochastic aspect
 - Helps to guide the simulation into more "real" and fair traces
- Almost fully implemented
 - Lacking reencoding of constraints related to integer sequences
- Future work
 - Uncertain coincidence as a separate constraint
 - ▶ Rational instants are too precise
 - ▶ Previously "indeterminate size" steps were uncertain
 - Extraction of specification distributions

References I

- [1] Patricia Bouyer et al. “Compositional Design of Stochastic Timed Automata”. In: *Computer Science – Theory and Applications*. Ed. by Alexander S. Kulikov and Gerhard J. Woeginger. Vol. 9691. Cham: Springer International Publishing, 2016, pp. 117–130. ISBN: 978-3-319-34170-5 978-3-319-34171-2. DOI: 10.1007/978-3-319-34171-2_9. URL: http://link.springer.com/10.1007/978-3-319-34171-2_9.
- [2] Julien Deantoni, Charles André, and Régis Gascon. “CCSL Denotational Semantics”. report. Inria, Nov. 13, 2014, p. 29. URL: <https://hal.inria.fr/hal-01082274>.
- [3] Dehui Du et al. “pCCSL: A Stochastic Extension to MARTE/CCSL for Modeling Uncertainty in Cyber Physical Systems”. In: *Science of Computer Programming* 166 (Nov. 15, 2018), pp. 71–88. ISSN: 0167-6423. DOI: 10.1016/j.scico.2018.05.005. URL: <https://www.sciencedirect.com/science/article/pii/S0167642318301916>.

References II

- [4] Li Huang, Tian Liang, and Eun-Young Kang. "Formal Verification of Dynamic and Stochastic Behaviors for Automotive Systems". In: *2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS)*. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). Nov. 2019, pp. 11–20. DOI: 10.1109/ICECCS.2019.00009. URL: <https://ieeexplore.ieee.org/document/8882750>.
- [5] Eun-Young Kang, Dongrui Mu, and Li Huang. "Probabilistic Verification of Timing Constraints in Automotive Systems Using UPPAAL-SMC". In: *Integrated Formal Methods*. Ed. by Carlo A. Furia and Kirsten Winter. Cham: Springer International Publishing, 2018, pp. 236–254. ISBN: 978-3-319-98938-9. DOI: 10.1007/978-3-319-98938-9_14.
- [6] Frédéric Mallet. "Clock Constraint Specification Language: Specifying Clock Constraints with UML/MARTE". In: *Innovations in Systems and Software Engineering 4* (Oct. 1, 2008), pp. 309–314. DOI: 10/dn4ptd.

References III

- [7] Pavlo Tokarev. "Modular Real-Time Clock Constraint Specification Language". PhD thesis. Université Côte d'Azur, Dec. 13, 2024. URL: <https://theses.hal.science/tel-04933243>.
- [8] Pavlo Tokarev, Irman Faqrizal, and Julien Deantoni. "Understandable Timing Analysis of Service-Oriented Architecture Components in Software-Defined Vehicle". In: *Communications in Computer and Information Science. CCIS*. Proceedings of the 20th Int. Conf. on Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI-2025). Nice, France, Sept. 2025. URL: <https://inria.hal.science/hal-05224373>.
- [9] Pavlo Tokarev and Frédéric Mallet. "Real-Time CCSL: Application to the Mechanical Lung Ventilator". In: ABZ 2024 – 10th International Conference on Rigorous State Based Methods. Vol. LNCS-14759. Springer, June 25, 2024, p. 289. DOI: 10.1007/978-3-031-63790-2_24. URL: <https://inria.hal.science/hal-04639949>.