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Motivation

® Uncertainty is a state of partial knowledge
® |mplementation is uncertain

m From component production
m From finite precision of testing
m From environment

Model and development can be uncertain

m Not every requirement is known
m If a requirement is not yet precise
m By design: HAL4SDV

® Proving properties regardless of uncertainty is crucial

® Thus capturing the uncertainty is important



The Clock Constraint Specification Language (CCSL) [6, 2]

A language that specifies the temporal behaviour of a system

Variables represent logical clocks

Constraints are relations between the logical clocks

Logical clock is a possibly infinite totally ordered sequence of time instants
c=¢g<qg<...,cel
A time structure (/,=/,<;)

m A solution that satisfies the constraints

m Commonly, a schedule/trace, a sequence of steps, totally ordering the instants
The problem

m For a specification, there is a set of valid schedules
m Find out if it is empty



Example: precedence
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constraint semantics
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Uncertainty so far

® CCSL already can express uncertainty

m By missing constraints
m Steps have unknown width
m Using auxiliary constructions

® In case of quantitative time ("delay event by 2.1ms") — complicated to solve

® With constraints of RTCCSL it is easier and simpler to express quantitative time with its
uncertainty



Real-Time CCSL [9, 7]

® Expresses quantitative time and its uncertainty

® Adds 3 new constraints: real-time delay, periodic with jitter or drift
® |nstants are considered to be exactly Q

® For example, real-time delay:

Vx <y €Qso:(l,=,<))Fb=delayaby[x,y] & Vi:b;—a; €[x,y]
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Modular CCSL [7]

® Based on subspecification relation €
m Inclusion of language projection: A € BdéfﬂC(A)nC(B)(A) € Neanea)(B)
m Simulation relation on common subset of clocks

Module is defined as tuple (A, S, G)
m Assumption, Structure, Guarantee

m The module "body" BEAAS
m It is valid when Ae Be G

Modules can be chained

Nearly not implemented right now

m Only certain types of specifications are simple to check
m Still useful as separation of concerns



Contribution

* Specification defines what is possible, not what is likely to happen

® Stochastic constraints guide the simulation of uncertain specification to the more probable
trace

® Traces can be processed to extract representative system metrics like response time using
functional chain description



Stochastic extension

® Prerequisite: uncertainty is detached from constraints

In real-time delay:

Yv=(vwv...),v€Q:(l,=,<)Fb=delayabyv < Vi:b—a; =y
| — |

constraint semantics

m Periodic, logical delay, subclocking are modified this way too
m Additional object in a specification: rational or integer sequence variable

® Uncertainty is separately specified on the sequence variables

Vx=(xox1...),x,c€EQ:xMc & Vi:X,-NQC

Stochastic constraints define how the elements are distributed
m Implemented few classic distributions, normal, exponential, uniform
® continuously distributed x as normal (mu, sigma)

Vi:x; ~ N(p,o)

m Uncertainty bounds + distribution result in truncated distribution



Limitations

® The distributions need to be independent and stable in their domain:

m No double distribution on sequences
m Bounds should be present and not modified
m Both should be placed in assumptions
m Assumptions guarantee that nothing can interfere with the distribution
® Variables cannot be used twice in different constraints
m Otherwise, an arbitrary dependency between past and future quantitative time
m Requires that sequences have to be remembered as the constraint state

e Comparison between sequences is not allowed



Simulation

® Behaviour exploration is prioritized

® When distribution is unspecified, some value is picked, uniformly, but not in the original
interval

e b e
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P(anb)=0

® With stochastic constraints: mix between event-driven simulation and behaviour exploration



Application

* In HAL4SDV project [8]
m A DSL? that describes a Service-oriented
architecture in a Software Defined Vehicle
m Translates into presented language and
simulates” the system
m So far described a version of Autonomous
Emergency Braking System
® ABZ use cases: landing gear and
mechanical lung ventilator

“https://github.com/jdeantoni/
SoftwareDefinedVehicleModelinglLanguage
®https://github.com/PaulRaUnite/mrtccsl
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https://github.com/jdeantoni/SoftwareDefinedVehicleModelingLanguage
https://github.com/jdeantoni/SoftwareDefinedVehicleModelingLanguage

Related works

* Network of Stochastic Timed Automata [1]

m Synchronization: broadcast vs rendez-vous
m Completely independent automata vs only stochastic part
m Additive vs subtractive description

* Probabilistic CCSL [3]
m Defines probability of an event in a step
» Explicitly
» Transitively through expression constraints
m Redefines constraints
m Only makes sense when step is fixed size (hard requirement)

* PrCCSL [5] and PrCCSL™ [4]

m Expresses uncertainty about the constraint itself, not time or parameters
m No recovery strategies, so a violation invalidates the whole trace



Conclusion and future work

® Conceptualized the extension that

m Enriches uncertainty in constraints with stochastic aspect

m Helps to guide the simulation into more "real" and fair traces
¢ Almost fully implemented

m Lacking reencoding of constraints related to integer sequences
® Future work

m Uncertain coincidence as a separate constraint

» Rational instants are too precise
» Previously “indeterminate size” steps were uncertain

m Extraction of specification distributions
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