
What I did Last Summer …

1

SCCharts Twelve Years Later
A Reflection on Sequential Constructiveness

and Text-First Modeling

Reinhard von Hanxleden
rvh@informatik.uni-kiel.de

Presentation at SYNCHRON, Nov. 2025, Aussois, France
Based on keynote at LCTES 2025, June 17, 2025

2

mailto:rvh@informatik.uni-kiel.de

Interface
declaration

Final state

Initial state

Delayed
Transition
(+ Trigger)

Region

Termination

Superstate

Immediate
transition
(+ Effect)

Strong abort

Initialization

3

1980s: Statecharts

5

Harel
Statecharts: A Visual Formalism for Complex Systems
Science of Computer Programming‚ 1987

1990s: Many Statecharts

6

Michael von der Beeck
A Comparison of Statecharts Variants
Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, 1994

1991: Argos

7

Florence Maraninchi
The Argos language: Graphical Representation of Automata and Description of Reactive Systems
IEEE Workshop on Visual Languages, Kobe, Japan, 1991

1995: SyncCharts, a.k.a. Safe State Machines

8

Charles André
SyncCharts: A Visual Representation of Reactive Behaviors
Research Report 95-52, I3S, Sophia Antipolis, 1995

Limitations of Strict Synchrony

Not allowed in SyncCharts, Esterel, etc.!

9

if (!x) {
 …
 x = true;
}

SCCharts – Motivation
Preserve nice properties of synchronous programming
• Determinacy, sound semantic basis
• Static causality (i.e., determinacy) checking, no run-time surprises
• Efficient synthesis
Reduce the pain
• Make it easy to adopt for mainstream programmer
• Reject only models where determinacy is compromised
• Approach: harness scheduling information from sequential/imperative constructs

10

von Hanxleden, Duderstadt, Motika, Smyth, Mendler, Aguado, Stephen, O'Brien
SCCharts: sequentially constructive statecharts for safety-critical applications –
HW/SW-synthesis for a conservative extension of synchronous statecharts
PLDI ‘14

Sequential Constructiveness

Idea: Sequential control flow overrides „write before read“
Writes visible only to reads that are
1. sequential successors or
2. concurrent

19

Reinhard von Hanxleden, Michael Mendler, et al.
Sequentially Constructive Concurrency—A Conservative Extension of the Synchronous Model of Computation.
ACM TECS ’14

Must Still Reject Some Models ...

23

Concurrent accesses may lead to causality cycles

Must Still Reject Some Models ...

Concurrent accesses may lead to causality cycles

24

Must Still Reject Some Models ...

Concurrent accesses may lead to causality cycles

25

Another Example

26

Another Example

27

Another Example

28

SCChart Building Blocks

34

Thread Conditional Assignment Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2
join pause

SCG

M2M Mappings

35

⇒

36

Thread Conditional Assignment Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2
join pause

SCG

M2M Mappings

37

Interface
declaration

Final state

Initial state

Root state

Named
simple state

Transition trigger/
effect

Region ID

Transition
priority

Anonymous
simple state

Termination

Superstate

Immediate
transition

Local declaration

Some Syntactic Sugar: Core SCCharts

38

More Syntactic Sugar: Extended SCCharts

39

Taking Stock

SCCharts defined by M2M
Transformations

• Extended SCCharts

• Core SCCharts

• Normalized Core SCCharts

• SCL/SCG

40

Downstream Compilation

41

Dataflow
Approach

Priority
Approach

Accepts instantaneous loops – +
Can synthesize hardware + –
Can synthesize software + +
Size scales well (linear in size of SCChart) + +
Speed scales well (execute only active parts) – +
Instruction-cache friendly (good locality) + –
Pipeline friendly (little/no branching) + –
WCRT predictable (simple control flow) + +/–
Low execution time jitter (simple/fixed flow) + –
Variable number (guard variables) – +

von Hanxleden, Duderstadt, Motika, Smyth, Mendler, Aguado, Stephen, O'Brien
SCCharts: sequentially constructive statecharts for safety-critical applications –
HW/SW-synthesis for a conservative extension of synchronous statecharts
PLDI ‘14

Thread Conditional Assignment Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2 join pause

SCG

42

Priority-Based Compilation

• More software-like
• Don't emulate control flow with guards/basic blocks,

but with program counters/threads
• Priority-based thread dispatching
• SCLP: SCL + PrioIDs
• In C: implemented as macros, using computed gotos
• In Java: no macros, no gotos

• emulate gotos with while + break

43

Priority
Based on data
dependencies

PrioID
Based on Priority &
ThreadID, must be
run-time unique

44

45

THREAD_STATES

Disabled

Enabled

Active

Inactive

pause tick

[-]

fork

join

[-]

46

SCLP:

47

4
8

4
9

Take-Home Message

• Can do wonderful things with C preprocessor!
• Can do wonderful things with computed gotos!
• Can do wonderful things with embedded assembler!

50

SCCharts – Classroom-Tested

51

SCCharts – Classroom-Tested

52

• 10.000 / 135.000 SCChart nodes
before/after normalization

• 650.000 lines of C-code
• Compiles in about 2 min’s
• 2 ms reaction time

Another Sequentially-Constructive Language: Blech

53

www.blech-lang.org
Lucas, Schulz-Rosengarten, von Hanxleden, Gretz, Grosch
Extracting Mode Diagrams from Blech Code
FDL 2021

https://www.blech-lang.org/

Take-Home Message
• Small number of core constructs sufficient for reactive control flow!
• On top of that, can build powerful constructs as syntactic sugar

Advantage:
• Can keep core semantics clean and simple
• Can easily adapt to different syntheses (hw + sw)

BUT:
• Resulting code difficult to map back to original model!
• This motivated “Interpreter-Approach”
• … which also scales better, as it facilitates module-reuse

Smyth, Motika, von Hanxleden
Synthesizing Manually Verifiable Code for Statecharts
Reactive and Event-based Languages & Systems (REBLS '18) 54

Text-First Modeling in SCCharts

• SCCharts have textual and
graphical syntax
• In KIELER tool, modeler

writes textually, tool
automatically synthesizes
graphical views
• Uses auto-layout from

Eclipse Layout Kernel (ELK)

55

Pragmatics-Aware Modeling

Free user of tedious mechanical work, such as . . .
• manual placing of graphical objects
• manual navigation in complex models
Focus on pragmatics:
• New interaction methodologies
• New analysis methodologies
• New ways to synthesize models
Our experimental platforms:

56

Eclipse Layout Kernel

• A model represents knowledge.
A model could be a single object (rather uninteresting),
or it could be some structure of objects.

• A view is a (visual) representation of its model.
It would ordinarily highlight certain attributes of the model and
suppress others.
It is thus acting as a presentation filter.

• A controller is the link between a user and the system.
It provides the user with input by arranging for relevant views to
present themselves in appropriate places on the screen.

57

Trygve Reenskaug
Models - Views - Controllers
Xerox PARC technical note, 1979

Key to Pragmatics: The MVC Paradigm

Fuhrmann, von Hanxleden
On the Pragmatics of Model-Based Design
15th Monterey Workshop 2008, LNCS 6028 (2010) 58

Key to Pragmatics: The MVC Paradigm

Dr. Andreas Seibel, BSH Hausgeräte GmbH
E-Mail from Oct. 6, 2017

In our experience over many years my colleagues and I
concluded that textual modeling is the only practical way,
but that a graphical view of the models is a must-have as well.
Your technology closes exactly that gap.

60

Pragmatics is Catching On …

Another Text-First Language: Lingua Franca

61

www.lf-lang.org

von Hanxleden, Lee, et al.
Pragmatics Twelve Years Later: A Report on Lingua Franca
ISoLA 2022

http://www.lf-lang.org/

Outlook: Model Order

• Both options equally “good” from perspective of automatic layout!
• The problem goes back to the heart of graph drawing

• A graph is a pair (V, E), where V is a set of vertices, E is a set of edges
• Approach: replace “set” (unordered!) by “list” (ordered!)
• Derive model order from textual input

scchart OneTwo {
state One
go to Two

state Two
go to One

} View Alternative View

Domrös, Riepe, von Hanxleden
Model Order in Sugiyama Layouts
IVAPP 2023 62

Take-Home Message
• Automatic layout is practical
• Users love …

• … to not spend precious life time on manual layout
• … to have control over how a diagram looks

• Users do not love …
• … surprising or unstable layouts
• … having to learn layout options or annotations, it should “just work”

• Should revise definition of graph!

63

Outlook: Concurrent Sequential Constructiveness

Recall: Concurrent accesses may lead to causality cycles

64

Outlook: Concurrent Sequential Constructiveness

Recall: Concurrent accesses may lead to causality cycles

65

Outlook: Concurrent Sequential Constructiveness

Recall: Concurrent accesses may lead to causality cycles

66

• But why not let the order (of regions)
prescribe the schedule!

• I.e., within a tick, first schedule region A,
then region B

• See e.g. some Statechart dialects, or PRET-C

Andalam, Roop, Girault
Deterministic, predictable and light-weight
multithreading using PRET-C
DATE 2010

• Still deterministic
• Still under programmer control

Advantage:
• No more (?) nasty causality issues
• Simpler semantics

The price to pay:
• No back-and-forth scheduling within tick
• But is that really a problem? Watch this space …

67

Outlook: Concurrent Sequential Constructiveness

68

Bonus: Concurrent Sequential Constructiveness
for Esterel

Smyth, Motika, Rathlev, von Hanxleden, Mendler
SCEst: Sequentially Constructive Esterel
ACM TECS 2018 (MEMOCODE 2015)

Accepted!

Wrap-Up
Language
• 5 core constructs

• Smörgåsboard of extensions

Model of Computation
• Relaxed synchrony

• Still determininistic

Text-First Modeling
• KIELER + ELK provide infrastructure

• Model order valuable

Still plenty of things to do: Variants on SC MoC, optimize
code generation, pragmatics improvements …

69

SCCharts – Conclusion

• Sequential constructiveness
• … is natural for programmers and proven in practice
• … so far, tricky to formalize precisely
• … should take even more advantage of textual order
• Easy control of scheduling is key!

• Text-first modeling
• … is natural for programmers and proven in practice
• … harnesses power of automatic layout
• … should take even more advantage of textual order
• Easy control of layout is key!

Thank you!

EXTRAS

71

Booleans vs. Signals

bool:

• true or false

• Persistent across ticks

72

Booleans vs. Signals

signal:

• true (“present”)
or false (“absent”)

• Re-initialized to absent
(unless input signal) at each tick

• Conceptually, correspond to events

• ... and beyond these pure signals, there are also valued signals,
which carry a – persistent – value of some type (including bool) ...

73

Simulation

74

Simulation

75

Simulation

76

Simulation

77

Inits/Updates –
Enable Signals!

Expand complex
final state

Expand
signals

Expand
during action

78

Dataflow SCCharts

scchart add {
 input bool in1, in2
 output bool out

 dataflow:
 out = in1 + in2
}

Semantically, dataflow equations correspond to concurrent assignments,
as in immediate during actions,
following iur-scheduling

79

80

More Language Features

• The semantic kernel of SCCharts has been stable since beginning

• Beyond kernel, have host language interaction, for regions, reference
charts/inheritance, dataflow, ...

• Like other languages (e.g., Java), the feature set of SCCharts keeps
evolving – also based on your input!

• When using SCCharts, should consult current documentation and
experiment with different features to see what might suit you best

81

Induced Dataflow

82

Induced Dataflow

Wechselberg, Schulz-Rosengarten, Smyth, von Hanxleden
Augmenting State Models with Data Flow
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 201883

Induced Dataflow

Wechselberg, Schulz-Rosengarten, Smyth, von Hanxleden
Augmenting State Models with Data Flow
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 201884

Induced Dataflow

Wechselberg, Schulz-Rosengarten, Smyth, von Hanxleden
Augmenting State Models with Data Flow
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 201885

Customized Skins

import "DF-0007"
#skinpath "skin"

scchart df#1000 {
 input int I, I2
 output int O
 ref df#0007 A, A2

 dataflow:
 A = {true, false}
 A2 = {true, A.out}
 O = A2.out
}

86

