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1980s: Statecharts

5

Harel
Statecharts: A Visual Formalism for Complex Systems
Science of Computer Programming‚ 1987



1990s: Many Statecharts

6

Michael von der Beeck
A Comparison of Statecharts Variants
Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 863, 1994



1991: Argos
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Florence Maraninchi
The Argos language: Graphical Representation of Automata and Description of Reactive Systems
IEEE Workshop on Visual Languages, Kobe, Japan, 1991



1995: SyncCharts, a.k.a. Safe State Machines
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Charles André
SyncCharts: A Visual Representation of Reactive Behaviors
Research Report 95-52, I3S, Sophia Antipolis, 1995



Limitations of Strict Synchrony

Not allowed in SyncCharts, Esterel, etc.!
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if (!x) {
  …
   x = true;
}



SCCharts – Motivation
Preserve nice properties of synchronous programming
• Determinacy, sound semantic basis
• Static causality (i.e., determinacy) checking, no run-time surprises
• Efficient synthesis
Reduce the pain
• Make it easy to adopt for mainstream programmer
• Reject only models where determinacy is compromised
• Approach: harness scheduling information from sequential/imperative constructs
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von Hanxleden, Duderstadt, Motika, Smyth, Mendler, Aguado, Stephen, O'Brien
SCCharts: sequentially constructive statecharts for safety-critical applications –
HW/SW-synthesis for a conservative extension of synchronous statecharts
PLDI ‘14



Sequential Constructiveness

Idea: Sequential control flow overrides „write before read“
Writes visible only to reads that are
1. sequential successors or
2. concurrent
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Reinhard von Hanxleden, Michael Mendler, et al.
Sequentially Constructive Concurrency—A Conservative Extension of the Synchronous Model of Computation. 
ACM TECS ’14



Must Still Reject Some Models ...
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Concurrent accesses may lead to causality cycles



Must Still Reject Some Models ...

Concurrent accesses may lead to causality cycles
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Must Still Reject Some Models ...

Concurrent accesses may lead to causality cycles
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Another Example
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Another Example
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Another Example
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SCChart Building Blocks
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Thread Conditional Assignment Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2 
join pause

SCG

M2M Mappings
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⇒
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Thread Conditional Assignment Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2 
join pause

SCG

M2M Mappings
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Some Syntactic Sugar: Core SCCharts
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More Syntactic Sugar: Extended SCCharts
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Taking Stock

SCCharts defined by M2M 
Transformations

• Extended SCCharts

• Core SCCharts

• Normalized Core SCCharts

• SCL/SCG
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Downstream Compilation
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Dataflow
Approach

Priority
Approach

Accepts instantaneous loops – +
Can synthesize hardware + –
Can synthesize software + +
Size scales well (linear in size of SCChart) + +
Speed scales well (execute only active parts) – +
Instruction-cache friendly (good locality) + –
Pipeline friendly (little/no branching) + –
WCRT predictable (simple control flow) + +/–
Low execution time jitter (simple/fixed flow) + –
Variable number (guard variables) – +

von Hanxleden, Duderstadt, Motika, Smyth, Mendler, Aguado, Stephen, O'Brien
SCCharts: sequentially constructive statecharts for safety-critical applications –
HW/SW-synthesis for a conservative extension of synchronous statecharts
PLDI ‘14



Thread Conditional Assignment Concurrency Delay

SCL t if (c) s1 else s2 x = e fork t1 par t2 join pause

SCG

42



Priority-Based Compilation

• More software-like
• Don't emulate control flow with guards/basic blocks, 

but with program counters/threads
• Priority-based thread dispatching
• SCLP: SCL + PrioIDs
• In C: implemented as macros, using computed gotos
• In Java: no macros, no gotos

• emulate gotos with while + break
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Priority 
Based on data 
dependencies

PrioID
Based on Priority & 
ThreadID, must be 
run-time unique
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SCLP:
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Take-Home Message

• Can do wonderful things with C preprocessor!
• Can do wonderful things with computed gotos!
• Can do wonderful things with embedded assembler!
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SCCharts – Classroom-Tested
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SCCharts – Classroom-Tested
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• 10.000 / 135.000  SCChart nodes
before/after normalization

• 650.000 lines of C-code
• Compiles in about 2 min’s
• 2 ms reaction time



Another Sequentially-Constructive Language: Blech
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www.blech-lang.org 
Lucas, Schulz-Rosengarten, von Hanxleden, Gretz, Grosch
Extracting Mode Diagrams from Blech Code
FDL 2021

https://www.blech-lang.org/


Take-Home Message
• Small number of core constructs sufficient for reactive control flow!
• On top of that, can build powerful constructs as syntactic sugar

Advantage:
• Can keep core semantics clean and simple
• Can easily adapt to different syntheses (hw + sw)

BUT:
• Resulting code difficult to map back to original model!
• This motivated “Interpreter-Approach”
• … which also scales better, as it facilitates module-reuse

Smyth, Motika, von Hanxleden
Synthesizing Manually Verifiable Code for Statecharts
Reactive and Event-based Languages & Systems (REBLS '18) 54



Text-First Modeling in SCCharts

• SCCharts have textual and 
graphical syntax
• In KIELER tool, modeler 

writes textually, tool 
automatically synthesizes 
graphical views
• Uses auto-layout from 

Eclipse Layout Kernel (ELK)
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Pragmatics-Aware Modeling

Free user of tedious mechanical work, such as . . .
• manual placing of graphical objects
• manual navigation in complex models
Focus on pragmatics:
• New interaction methodologies
• New analysis methodologies
• New ways to synthesize models
Our experimental platforms:

56

Eclipse Layout Kernel



• A model represents knowledge.
A model could be a single object (rather uninteresting), 
or it could be some structure of objects.

• A view is a (visual) representation of its model.
It would ordinarily highlight certain attributes of the model and 
suppress others. 
It is thus acting as a presentation filter.

• A controller is the link between a user and the system.
It provides the user with input by arranging for relevant views to 
present themselves in appropriate places on the screen.

57

Trygve Reenskaug
Models - Views - Controllers 
Xerox PARC technical note, 1979

Key to Pragmatics: The MVC Paradigm



Fuhrmann, von Hanxleden
On the Pragmatics of Model-Based Design 
15th Monterey Workshop 2008, LNCS 6028 (2010) 58

Key to Pragmatics: The MVC Paradigm



Dr. Andreas Seibel, BSH Hausgeräte GmbH
E-Mail from Oct. 6, 2017

In our experience over many years my colleagues and I 
concluded that textual modeling is the only practical way,
but that a graphical view of the models is a must-have as well.
Your technology closes exactly that gap.

60

Pragmatics is Catching On …



Another Text-First Language: Lingua Franca
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www.lf-lang.org 

von Hanxleden, Lee, et al.
Pragmatics Twelve Years Later: A Report on Lingua Franca
ISoLA 2022

http://www.lf-lang.org/


Outlook: Model Order

• Both options equally “good” from perspective of automatic layout!
• The problem goes back to the heart of graph drawing

• A graph is a pair (V, E), where V is a set of vertices, E is a set of edges
• Approach: replace “set” (unordered!) by “list” (ordered!)
• Derive model order from textual input

scchart OneTwo {
state One
go to Two

state Two
go to One

} View Alternative View

Domrös, Riepe, von Hanxleden
Model Order in Sugiyama Layouts
IVAPP 2023 62



Take-Home Message
• Automatic layout is practical
• Users love …

• … to not spend precious life time on manual layout
• … to have control over how a diagram looks

• Users do not love …
• … surprising or unstable layouts
• … having to learn layout options or annotations, it should “just work”

• Should revise definition of graph!
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Outlook: Concurrent Sequential Constructiveness

Recall: Concurrent accesses may lead to causality cycles
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Outlook: Concurrent Sequential Constructiveness

Recall: Concurrent accesses may lead to causality cycles
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Outlook: Concurrent Sequential Constructiveness

Recall: Concurrent accesses may lead to causality cycles
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• But why not let the order (of regions) 
prescribe the schedule!

• I.e., within a tick, first schedule region A, 
then region B

• See e.g. some Statechart dialects, or PRET-C

Andalam, Roop, Girault
Deterministic, predictable and light-weight
multithreading using PRET-C
DATE 2010



• Still deterministic
• Still under programmer control

Advantage:
• No more (?) nasty causality issues
• Simpler semantics

The price to pay:
• No back-and-forth scheduling within tick
• But is that really a problem? Watch this space …
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Outlook: Concurrent Sequential Constructiveness
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Bonus: Concurrent Sequential Constructiveness 
for Esterel

Smyth, Motika, Rathlev, von Hanxleden, Mendler
SCEst: Sequentially Constructive Esterel
ACM TECS 2018 (MEMOCODE 2015)

Accepted!



Wrap-Up
Language
• 5 core constructs

• Smörgåsboard of extensions

Model of Computation
• Relaxed synchrony

• Still determininistic

Text-First Modeling
• KIELER + ELK provide infrastructure

• Model order valuable

Still plenty of things to do: Variants on SC MoC, optimize 
code generation, pragmatics improvements …
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SCCharts – Conclusion

• Sequential constructiveness
• … is natural for programmers and proven in practice
• … so far, tricky to formalize precisely
• … should take even more advantage of textual order
• Easy control of scheduling is key!

• Text-first modeling
• … is natural for programmers and proven in practice
• … harnesses power of automatic layout
• … should take even more advantage of textual order
• Easy control of layout is key!

Thank you!



EXTRAS
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Booleans vs. Signals

bool:

• true or false

• Persistent across ticks
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Booleans vs. Signals

signal:

• true (“present”) 
or false (“absent”)

• Re-initialized to absent 
(unless input signal) at each tick

• Conceptually, correspond to events

• ... and beyond these pure signals, there are also valued signals, 
which carry a – persistent – value of some type (including bool) ...
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Simulation
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Simulation
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Simulation

76



Simulation
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Inits/Updates – 
Enable Signals!

Expand complex 
final state

Expand 
signals

Expand 
during action
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Dataflow SCCharts

scchart add {
  input bool in1, in2
  output bool out
 
  dataflow:
  out = in1 + in2
}

Semantically, dataflow equations correspond to concurrent assignments,
as in immediate during actions,
following iur-scheduling 
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More Language Features

• The semantic kernel of SCCharts has been stable since beginning

• Beyond kernel, have host language interaction, for regions, reference 
charts/inheritance, dataflow, ...

• Like other languages (e.g., Java), the feature set of SCCharts keeps 
evolving – also based on your input! 

• When using SCCharts, should consult current documentation and 
experiment with different features to see what might suit you best
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Induced Dataflow
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Induced Dataflow

Wechselberg, Schulz-Rosengarten, Smyth, von Hanxleden
Augmenting State Models with Data Flow
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 201883



Induced Dataflow

Wechselberg, Schulz-Rosengarten, Smyth, von Hanxleden
Augmenting State Models with Data Flow
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 201884



Induced Dataflow

Wechselberg, Schulz-Rosengarten, Smyth, von Hanxleden
Augmenting State Models with Data Flow
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 201885



Customized Skins

import "DF-0007"
#skinpath "skin"

scchart df#1000 {
  input int I, I2
  output int O
  ref df#0007 A, A2

  dataflow:
  A = {true, false}
  A2 = {true, A.out}
  O = A2.out
}
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