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Memory constraints:

@ All computing systems operate under some memory constraint.

@ Often, one can buy more memory or limit the problem size.
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Memory constraints:

@ All computing systems operate under some memory constraint.

@ Often, one can buy more memory or limit the problem size.

But sometimes:

@ Supply is too small: embedded systems, loTs, wearable systems, ...

@ Demand is too large: DNNs, scientific computing, ...

Our goal:

Dynamic parallel scheduling of dataflow graphs under memory constraint
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Our memory peak problem

Input

G A Directed Acyclic Task Graph (DAG), with memory costs
attributes (on the edges) and execution times (on the
nodes/tasks).

p  The number of available homogeneous processors
with shared memory.

M The memory constraint.

A parallel schedule S of G on the p processors, respecting the constraint
memory peak(S) < I and minimizing the execution time Cpmax (S).

The memory peak(S) is the maximum amount of memory used during S.
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utline

System model: Task graphs, memory peak, and schedule graphs

First contribution: Optimal sequential scheduling for the memory peak

@ Second contribution: Dynamic memory-aware parallel list scheduling

Experimental evaluation: Success rate, speedup, and execution time

@ Conclusion and future work
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System model
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Task graph example
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Task graph example

2 2
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2 1 number of tokens
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@ execution time

Produce-Before-Consume (PBC) shared memory model [MB'01]

When a task executes, first it reads its input tokens, it performs its
execution, then it allocates memory for its output tokens (its result) and
finally it frees the memory occupied by its input tokens.
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Task graph example

number of tokens

execution time

memory peak(A; B; D; C; E; F) = cut weight

Produce-Before-Consume (PBC) shared memory model [MB'01]

When a task executes, first it reads its input tokens, it performs its
execution, then it allocates memory for its output tokens (its result) and
finally it frees the memory occupied by its input tokens.

Memory peak of two sequential schedules:

memory peak(A; B;D;C, E;F)=8+1+2+1=12
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Task graph example

@ 2 fé\ 4

number of tokens

execution time
O

memory peak(A; B;C; D; E; F) = cut weight

- ===

Produce-Before-Consume (PBC) shared memory model [MB'01]

When a task executes, first it reads its input tokens, it performs its
execution, then it allocates memory for its output tokens (its result) and
finally it frees the memory occupied by its input tokens.

Memory peak of two sequential schedules:

memory peak(A; B;D;C, E;F)=8+1+2+1=12
v memory peak(A; B;C;D;E;F)=8+1+1=10v
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Handling memory models: PBC, CBP, ... [MB'01]

Arbitrary node/task in the PBC model
input graph

PBC with ¢ local variables
model
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First contribution:

Memory-optimal sequential schedule
[FGH'24]
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First transformation on G: put the memory attributes on
the nodes

Initial task graph G: production/consumption per edge

>~ . PBC: Task A produces (allocates) its r output tokens
' : and then consumes (frees) its s input tokens.
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the nodes

Initial task graph G: production/consumption per edge

>~ . PBC: Task A produces (allocates) its r output tokens
' : and then consumes (frees) its s input tokens.

Schedule graph G’: peak and impact per task (also per sequence)

eak
Notation A(irlr)lpact) with:

@ peak mg=r eN

@ impact iy =r—seZ
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Example: A task graph G and its schedule graph G’

Initial task graph:

Works also when a node contains a sequence of tasks (a sub-schedule).
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Second transformation on G’: Peak-preserving local
compression rules [FGH'24]

Clustering rule (C1) (there is also a dual rule (C2))
1 —+(A) 1
///'3 A(I,AZO)/\(WB—F/,AZWA)% ///73
2 2
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Second transformation on G’: Peak-preserving local
compression rules [FGH'24]

Clustering rule (C1) (there is also a dual rule (C2))

Sequentialization rule (S1) (there is also a dual rule (S2))

2 2
(@j/_‘ ANia <0)A(mg >ma) = %@g’
13 1///,3

These four rules reduce the number of sequential schedules of G’.
Simple topological and arithmetic conditions that can be checked locally.

v
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Results on these transformations [FGH'24]

Properties

Memory peak preservation: Any compressed graph G” always admits
at least one minimal memory peak schedule S,.

Computational complexity: Quartic in the size n of G': O(n*).

Minimal memory peak schedule: For any graph G’ compressed into a
single node graph G” (in particular every SP-DAGs), the single node
of G” contains a schedule with the minimal memory peak of G.

Optimized Branch and Bound algorithm

For all graphs not compressed into a single node.
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From polynomial to exponential complexity

All other DAGs: 2"
[Sethi'73]

Fully compressible DAGs: n*
[FGH'24]

Serie-parallel DAGs: n?
[MNSV'18]
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Graph transformation algorithm

Compresses the schedule graph G until no transformation rule applies

1 repeat

2 repeat

3 repeat

4 ‘ _; > Rules (C1) and (C2), O(n)

5 until — changed;

6 _; > Rules (S1i) and (S2i), O(n?)
7 until - changed,;

8 _; > Rules (S1) and (S2), O(n®)
9 transitive_reduction(G); = O(n°)

10 until — changed,;

(S1i) and (S2i) are the “immediate successor” variants (much cheaper)
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Experimental results

QMF benchmark [MBO1] in SDF [LM87], fully expanded

It is a signal processing application with parameterized size.
— task graphs up to 50,000 tasks (no execution times provided)

filterbank |G|  [MB'01] [KLMU'18] [ours] sec.

qmf23_2d 78 22 18 13 0.007
qmf23_3d 324 63 53 31 0.06
gmf23_5d 4,536 492 405 247 6.7
qmfl12_2d 40 9 10 7 0.003
gmfl2_3d 112 16 20 11 0.009
qmf12_5d 704 58 79 35 0.1
qmf235_2d 190 55 45 22 0.03
gmf235.3d 1,300 240 133 47 0.7
gmf235.5d 50,000 5,690 1,190 272 802.5

P. Fradet, A. Girault, A. Honorat — Parallel scheduling of task graphs under minimal memory constraints 15/31



Second contribution:

Dynamic memory-aware parallel list

scheduling [FGH'25]
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Goal: Execute tasks in parallel as long as we are below I1
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From a "wide mountain” (optimal sequential schedule) ...
to a “narrow plateau” (parallel schedule)
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Dynamic memory-aware ready list parallel scheduler

1 if (a task completes) then

2 p < nbldleProcessors();

3 ready _ > (sorted) list of ready tasks

4 while (p > 0 and size(Leaqy) > 0) do

5 X < pop(['ready);

6 if _ then > check that if X is scheduled

now, the new memory peak is < Tl

7 p<<p—1;

8 launch(X); > X is launched immediately on the first
idle processor

9 else

10 L _ , > depends on the variant

Three variants depending on how the _ are implemented.
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Our three scheduler variants

Scheduler-V1: Follow the sequential order of Sg,
otherwise wait for the next scheduling instant.
< See the paper.

Scheduler-V2: Ready List sorted w.r.t. bottom levels.
— See next slides.

Scheduler-V3: Adaptive aggregation of the sequential order of S,
and the sequential order based on the bottom levels.
— See the paper.
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Scheduler-V2: Ready List sorted w.r.t. bottom levels

Variant specification
ready list L esq,: sorted according to the bottom levels (bf)

memory check: on the current memory peak and on the peak of
remaining sequential schedule (initialized with S,)

continue: if the current task cannot be scheduled,
then try the next task in L eaqy
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Scheduler-V2: Ready List sorted w.r.t. bottom levels

Variant specification
ready list L esq,: sorted according to the bottom levels (bf)

memory check: on the current memory peak and on the peak of
remaining sequential schedule (initialized with S,)

continue: if the current task cannot be scheduled,
then try the next task in L eaqy

Bottom level [Hu'61]
Efficient node ordering based on the critical path: Backward computation

bi(X) = ET, be(Y
( ) X+Y€Q1?:§(X){ ( )}
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Scheduler-V2: Enforcing the memory constraint 'l = 10
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Scheduler-V2: Enforcing the memory constraint 'l = 10

Soe =AB;C;D;E; F
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Scheduler-V2: Enforcing the memory constraint 'l = 10

So =AB;C.:D;E; F

Eready = [A; B]
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Scheduler-V2: Enforcing the memory constraint 'l = 10

So=/"B;C;:D;E; F

»Cready = [B; D]

#Procs.

2 Time
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Scheduler-V2: Enforcing the memory constraint 'l = 10

So=/"B;C;:D;E; F
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Scheduler-V2: Enforcing the memory constraint 'l = 10

So = C:D;E; F

»Cready = [D; C]

#Procs.
B remaining optimal sequential Se:
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Scheduler-V2: Enforcing the memory constraint 'l = 10
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Scheduler-V2: Enforcing the memory constraint 'l = 10

»Cready = [D]

#Procs.

D:E: F
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zl Time
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Scheduler-V2: Enforcing the memory constraint 'l = 10

£ready = [F; E]

#Procs.
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A C
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Scheduler-V2: Enforcing the memory constraint 'l = 10

£ready = @
#Procs.
B E | remaining So:
A C D F__ |
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Benchmarks and state-of-the-art algorithms

Pegasus benchmark [Silva+14]

Random generator of task graphs mocking real scientific workflow
applications.
— 120 task graphs of 50 and 100 tasks

QMF benchmark [MBO01] in SDF [LM87], fully expanded

It is a signal processing application with parameterized size.
< task graphs up to 50,000 tasks (no execution times provided)
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Benchmarks and state-of-the-art algorithms

Pegasus benchmark [Silva+14]

Random generator of task graphs mocking real scientific workflow
applications.
— 120 task graphs of 50 and 100 tasks

QMF benchmark [MBO01] in SDF [LM87], fully expanded

It is a signal processing application with parameterized size.
< task graphs up to 50,000 tasks (no execution times provided)

State-of-the-art: [MNSV'18]+[BMRT'20]

Add dummy edges to prevent graph cuts above the memory constraint I:
MBL Heuristic based on Min Bottom Levels

RO Heuristic based on a sub-optimal sequential schedule
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Experimental results

@ 1. Success rates
@ 2. Speedups

@ 3. Execution times

Download MASTAG at
https://gitlab.inria.fr/spades-pub/mastag
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1. Success rate to meet the memory constraint I

(Pegasus, 4 and 8 processors)

min. peak: M = minimal memory peak of S, [FGH'24].

midway: Il = average between the minimal memory peak of S, and the

memory peak obtained by a Critical Path list scheduling.

objective 4 processors 8 processors

MBL RO RO+S, [ours] | MBL RO RO+S,

[ours]
min. peak | 0% | 7% 49% | 100% | 6% | 21% 66% | 100%
midway 4% | 33% 75% | 100% | 8% | 44% 92% | 100%

By construction, our schedulers never fail !
Thanks to the memory check based on the suffix of Se.
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2. Speedups (Pegasus, 4 processors min. peak)

Speedup = Cnax(So) / Cmax(Method)

10*" sample ‘ RO  RO+S, [ours]-V1 [ours]-V2 [ours]-V3
L1co_50 Fail 3.09 1.49 3.04 2.78
Lico-100 Fail | Time Out 1.45 3.57 3.53
MONTAGE_50 3.57 3.56 2.43 3.57 3.57
MONTAGE_100 Fail 3.12 2.44 3.13 3.03
GENOME_50 Fail 1.08 1.08 1.26 1.08
GENOME_100 Fail | Time Out 1.08 1.26 1.28
Average 120 samples | N/A N/A 1.64 2.68 2.62
(Average 8 procs.) N/A N/A 1.91 3.80 3.68

V2, V3 with mem. check on the suffix of S, are very competitive ! J

Following strictly a precomputed seq. order (V1, RO) is not good ! J
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3. Preprocessing and scheduling runtimes

(QMF, 8 processors)

preprocessing (in sec.): time to add the dummy edges (RO) and/or to
compute a sequential schedule (all)

scheduling (in sec.): time to schedule (including the memory checks [ours])

sample #tasks RO [ours]-V3
preproc. sched. | preproc. sched.
QMF_235_d2 190 358.29 0.01 0.04 0.01

QMF_235.d3 | 1,300 Time Out N/A 0.76 0.19
QMF_235.d4 | 8,250 | Out of Memory | N/A 25.17 6.51
QMF_235.d5 | 50,000 | Out of Memory | N/A [828.27 [396.28

Our scheduler V3 handles up to 50,000 tasks ! J
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Wrap-up
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Summary of the whole scheduling method

Clustering rules
1 @) BRI

@ ,,‘.@_4.0(\ =1 4A8
AN

o(\.(tsow—v > i) (C2)

B+;3 Tla)s s
21N

(a20)A(ra+ua>m)  (C1)

G = Seqm‘a\\.atlon rules:
@2 s s
=il 1~ 1 @
- (?Saiﬁtv s >%;>OE$ Seo
: & 16 .
W<OAGozT)  (S1) Alto > O)A (a0 > 75+ 12) (52)
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x 5.76 on 8 procs. if (a task completes) then
p ¢ nbldleProcessors(); %
N\

4o ey [ERERHER) 0
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First contribution:

System model able to handle many memory models

@ Four graph transformations

@ Graph transformations based on simple topological and arithmetic
conditions that can be checked locally

@ In many cases, able to reduce the graph to a single node graph that
contains one memory-optimal sequential schedule

@ Optimized Branch-and-Bound algorithm to find a memory-optimal
sequential schedule: It explores the next nodes having the lower peak
and backtracks otherwise, taking into account the max

@ Significant improvement over the state of the art
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Second contribution:

@ Ready list-scheduling that relies on any sequential schedule to meet
the memory constraint I

@ Guarantees that the memory constraint I1 is always met !

e Very good speedups (on average 2.68 on 4 procs. and 5.76 on 8
procs.) and low execution times
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Implementation into a runtime scheduler (e.g. StarPU)

@ More precise task memory usage: memory profile in function of time

Study application to register minimization in compiling

@ Study complementary techniques to limit memory usage e.g.,
offloading and rematerialization
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Computing the memory peak of a sequential schedule (1)

Peak and impact of a sequence of 2 nodes

T 7ra,7rb+ba))
L

ACD. 508 — (4 gy (" (PI)

Property: Associativity

Operation (PI) is associative.

The memory peak of a sequential schedule can be computed in linear time. \
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Computing the memory peak of a sequential schedule (2)

Peak and impact of a sequence of 2 tasks

Ta maX(ﬂ'a,ﬂ'bJrLa))

A(La) : B(Tzl:) — (A, B)( tatip (P|)

4:8)); (¢;0)0) ; (£, F))
(A B; C; D)(lso) . (E; F)(%)l

(A;B; C;D; E; F)(IOO)
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Peak-preserving compression: Four rules to reduce them all

Two clustering rules:
1 A 1o 2 2
2///7.7 332//'7/’3 174’(% 3317‘(’3
A(I,AEO)A(WB+LA27TA) (Cl) /\(LBSO)/\(ﬂAZFB+LA) (C2)

Two sequentialization rules:

@+>2 2
ond _ O @, (A 3174@{7\.0
B+ 3 3 O (B—*
14/v 1///' 2%».” 2///'
Aea < 0)A(mp > Ta) (1) A(ig 2 0)A(ma+1tg > 7 +1a) (S2)

Properties

These four rules reduce the number of sequential schedules of G'.
Simple topological and arithmetic conditions that can be checked locally.
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Fully compressed graph G”

A:B:C:D: E; F(IOO)

G// —
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Scheduler-V1: Follow the sequential order, otherwise wait

Variant specification

ready list: sorted as in the optimal sequential schedule Sq
memory check: on the current memory peak only

break: if the current task cannot be scheduled,
wait until the next scheduling instant

canSched(X, M) < transientMem(t) + 7x < N (1)

transientMem(t) < Z Ly + Z Tz (2)

Y € completed(t) Ze running(t)
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Scheduler-V3: Adaptive aggregation of two orders

Variant specification
ready list: sorted according to b¢ and to S,

memory check: on the current memory peak and on the remaining
sequential peak (initialized with S,)

continue: if the current task cannot be scheduled
try the next ready task

Linear aggregation of two normalized orders w.r.t. So and b¢:
Score(X) = r Os,(X) + (1 — r) Ope(X) (3)

The ratio r depends on the memory constraint I, on the schedule
obtained with a Critical Path heuristics, and on Sq:
wcp — N
r=—__ (4)
Tcp — TS,
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Scheduler-V3: normalization of objectives

For bottom levels

Ope(X) = maxxffij;)bé(X) (5)

For sequential order

Os,(X) = % where i is X's index in 5", (6)
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Shared output data transformation

Garbage collectors (L) should be executed ASAP.
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