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Running Example

node sum(i: int; r: bool) returns (c: int)
let

¢ =1+ (if r then 0 else (0 fby c))
tel

Computes the sum of i, resets every r.

2/12



Running Example

node sum(i: int; r: bool) returns (c: int)
let

¢ =1+ (if r then 0 else (0 fby c))
tel

Computes the sum of i, resets every r.

node since(bl, b2: bool) returns (b: bool)

var pb : bool; b2 = true since last time bl = true.
let

pb = true fby b; Normalized form (£by in its own equation).
. ti = b2 and (bl or pb); Looks like NLustre.

e

node obs(i: int; r: bool) returns (ok: bool)
let
ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

If 1 non-negative since the last reset, then
sum is non-negative.

tel

2/12



Dataflow Semantics in Vélus

Inductive sem_exp: node since(bl, b2: bool) returns (b: bool)
| Svar: var pb : bool;
sem_var Hlx s — let

sem_exp H (
| Sbinop:

pb = true fby b;
b = b2 and (bl or pb);

sem_exp H el s1 — tel
sem_exp H e2 52 — vt | F T FH F o F D
L1ift2 op s1 s2 os — b2 | F T T F o I D
sem_exp H b (Ebinop op el e2) os [...]
with sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp He es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x c0 e) [...] sem_node f iss oss
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Proving a program property

» Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)

let

P> Against Vélus' semantic model ok = if since(r, i >= 0)

» Carries to the generated C-code cot then sun(i, r) >= 0 else true
e

In Rocq (simplified):

Lemma sum_obs_spec : V xs ys,
sem_node G "obs" xs ys —
V n, ys n = [vtrue].

» How should we prove it ?
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Proving a program property

v

v

Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)
let
Against Vélus' semantic model ok = if since(r, i >= 0)
Carries to the generated C-code cot then sun(i, r) >= 0 else true
e

In Rocq (simplified):
Lemma sum_obs_spec : V xs ys
sem_node G "obs" xs ys —
V n, ys n = [vtrue].
How should we prove it ?
Invert sem_node hypothesis = get unknown “history” with some hypotheses
Now what 7
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Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)
let
Against Vélus' semantic model ok = if since(r, i >= 0)
Carries to the generated C-code col then sun(i, r) >= 0 else true
e

In Rocq (simplified):

Lemma sum_obs_spec : V xs ys,
sem_node G "obs" xs ys —
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How should we prove it ?

Invert sem_node hypothesis = get unknown “history” with some hypotheses
Now what ?

Either do some complex reasoning by hand, maybe using Jeanmaire’s

SemantICS [Bourke, Jeanmaire, and Pouzet (2025): Functional Stream ]' or...

Semantics for a Synchronous Block-Diagram Compiler
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Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)
let
Against Vélus' semantic model ok = if since(r, i >= 0)
Carries to the generated C-code col then sun(i, r) >= 0 else true
e

In Rocq (simplified):

Lemma sum_obs_spec : V xs ys,
sem_node G "obs" xs ys —
V n, ys n = [vtrue].

How should we prove it ?

Invert sem_node hypothesis = get unknown “history” with some hypotheses
Now what ?

Either do some complex reasoning by hand, maybe using Jeanmaire’s

SemantICS [Bourke, Jeanmaire, and Pouzet (2025): Functional Stream ]' or...

Semantics for a Synchronous Block-Diagram Compiler

Use model-checking to do it automatically
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Proving a program property — Automatic approach

H Hagen and Tinelli (2008): Scaling Up the Formal Verifica- | . H H
> Klnd [tion of Lustre Programs with SMT-based Techniques } : automatic Ve”f Of LUStre programs

» Uses SMT-solving (Z3) + K-induction/Bounded Model Checking
» Let's do the same, but in Rocq :)
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Proving a program property — Automatic approach

H Hagen and Tinelli (2008): Scaling Up the Formal Verifica- | . H H
> Klnd [Lion of Lustre Programs with SMT-based Techniques } : automatic Verlf Of LUStre programs

» Uses SMT-solving (Z3) + K-induction/Bounded Model Checking
» Let's do the same, but in Rocq :)

Our approach:
» Compile a Vélus source program into NLustre, print its AST into a .v file
» Generates a parameterized boolean formula for the AST's semantics
» Apply k-induction principle to specialize this formula
» Discharge the specialized formula with SMTCoq

Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses
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From Lustre to NLustre AST

lparsing
Untyped

dataflow
optimizations
+ inlining

source-to-source
rewriting

> Lustre

Lustre

node sum(i: int; r: bool) returns (c: int)
let

c =1+ (if r then 0 else (0 fby c))
tel

node since(bl, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;

elaboration

> LN Lustre

—J

transcription
1
Program Definition obs := {| A
n_in := [(_i, (tyint, Cbase)); (_r, (tybool, Cbase))];
n_out := [(_ok, (tybool, Cbase))];
n_vars = [...];
n_egs = [
EqFby v5 Cbase (Const 0) (Evar v3);
{ EqDef v4 (Ecase (Evar _r) [Evar v5; Econst 0])
EqDef v3 (Ebinop Oadd (Evar _i) (Evar v4));

!

b = b2 and (bl or pb);
tel

node obs(i: int; r: bool) returns (ok: bool)
let
ok = if since(r, i >=0)

EgFby v2 Cbase (Enum 1%nat) (Evar v1);
EqDef vi1

L3 { (Ebinop Oand

(Ebinop Oge (Evar _i) (Econst 0))
(Ebinop Oor (Evar _r) (Evar v2)));

—
AST printing

then sum(i, r) >= 0 else true EgDef _ok
tel { (Ecase (Evar v1)

[Eenum 1; Ebinop Oge (Evar v3) (Econst 0)]);

]
[}. 6/12



Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
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Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
ifb (denot_clock (H n) Cbase)
(fst (Hn _ok)
&& hold
(fun m => denot_clock (H m) Cbase)
(snd (Hn _ok) =7 0)
(fun m = denot_exp (Hm) (H n _ok) (Evar v3))
n
)
(negb (fst (Hn _ok)) && snd (Hn _ok) =7 0)
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&& hold
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Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& (fix hold m :=
match n with
| 0= snd (Hn _ok) =7 0
| Sm = Bool.ifb (denot_clock (H m) Cbase)

(denot_exp (Hm) (H n _ok) (Evar v3))
(hold m)
end) n

7/12



Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& (fix hold m :=
match n with
| 0= snd (Hn _ok) =7 0
| Sm = denot_exp (Hm) (Hn _ok) (Evar v3)
end) n

7/12



Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
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Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& match n with
| 0= snd (Hn _ok) =7 0
| Sn = denot_exp (Hn) (H (S n) _ok) (Evar v3)
end
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Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.

(* Correctness lemma *)

Lemma denot_equation_safe :
wt_equation G [ equ —
sem_equation G H equ —

V n, denot_equation H equ n = true.
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Automated goal and k-induction

Node-specific goal to prove automatically:

Lemma obs_denot_spec : V H,
(Vn, (forallb (fun e = denot_equ H e n) (n_eqs nd))) — (* H respects semantics x)
Vn, (snd (Hn _ok) =7 1). (x output is always true *)

Difficulties:
» SMT solvers cannot deal with (Vn, ...) — (Vn, ..)
» for combinatorial programs, we can prove

V n,
(forallb (fun e = denot_equ H e n) (n_egs nd)) —
(snd (Hn _ok) =7 1)

» for stateful nodes (with £by), we need to add a (k-)induction hypothesis.
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K-induction tactic
Mg ANAIA--ANAy =72 PoAPLA--- APy with
JANSS.

An A1 A A Bk (e A Fzc Pyt
Po A Boia Aeeo A Pag, P, :=snd (Hn _ok) =71

Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

= forallb (fun e = denot_equ H e n) (n_egs nd)

Automatic tactic, but k must be specified by the user
9/12
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K-induction tactic

AoAAL A AA, Eze PoAPLA---AP,  With
A, := forallb (fun e = denot_equ H e n) (n_eqgs nd)

AnABapr A A AH(HI) a }:I[: Pn+(k+1)
Po A Boia Aeeo A Pag, P, :=snd (Hn _ok) =71

Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

First, apply the following lemma:

Lemma k_ind (k: nat) : V (P: nat — Prop),

(Vn, (n<k) — Pn) —
(Vn, (Vmm<k—=P(n+m)— P(k+n))—

¥V n, Pn.
Generates 2 goals

» First goal is split in k subgoals (n=0,1,....k — 1)

» Hypothesis of the second is specialized (m =0,1,....k — 1)

Automatic tactic, but k must be specified by the user
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Solving boolean goals with SMTCoq

st (et (62
G

K-induction has generated k + 1 boolean subgoals

ey

G varas) +7 DUz

G n vars2)

> e
o) et )1z <

One of them (for our example) looks like this

) ke
Cond (4 n vaxds) =7 DY) <

i n vards) =7 1U2) &k (et (1 0 vards) ke b 1) &8
"

nd CH n varss) =7 0)42)
H o varsa)) &k

ena G 0 varsa))iz

Gond 8 3 vars3) 27 031>

(nogd (et (i n vars

b rar (45 W)
G

L m (et (1 (5w o) & tre)
(e (st (8 ) vara
(aeb (ond i C

»
) vards) =7 1

ot 6 (5 0 varsd) kb

D12 1

w0

(a0 (6" varsey o7 ana 1 vasezn
(ona (3 (3 n) varse 2

Cond G (5 ) _om)

DHz traey vhue) true) true) trve = erue
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Solving boolean goals with SMTCoq i1

(i1b (ond (i n vards) =7 L%
(£t (1 n o6 <> fxc i novars2) b

K-induction has generated k + 1 boolean subgoals

.
o verdn) - DALY <o
) kb n) b

One of them (for our example) looks like this: L,

true) 42 (snd G b vars) =7 0)42)
o G varsa) kb

G varsaniz

) =7 oy
(fet (i n varsa)) w (and (i n varss) =7 O) &k

iz
G (o (TG 5 8 e (5w D w erue)

To solve it: verit tactic from SMTCoq g e e

(a6b (ond (8 (5 ) varas) =7 Y2
(ot (8 (S 1) _ok) <> fot (8 (5 1) varsd) kb
(ot (8 (s w) vars2) m

» Translates the goal into SMT B

(egd Ceot 8 (5 n) o)
Gkt s T S0 m

> Calls the veriT solver L

Bouton, Caminha B. de Oliveira, Déharbe, and Fontaine (2009): veriT: G GG b e G G B e
an open, trustable and efficient SMT-solver 11 Cone i (5 2 varss) =7 D e

(ond (8 (s 2) varis) =7 1I2)) b

P> Reconstructs a Rocq proof from the unsat certificate BT
Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular @G e
Integration of SAT/SMT Solvers to Coq through Proof Witnesses (e (85 0 S 2 o)

)
a G o u

> Qed. :)

Cont B G5'm Cob> T DZ crae) erae) true) rue) true = erue
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Demonstration

Let's hope the property is true !
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Limitations and Future Work

» Support for machine integers/floating point numbers ?
» The denotation/proof is done on arbitrary size integers

Fixpoint denot_int_exp (E: env) (e: exp) : bool

» Define a new version of the denotation
> Use cvcd/Z37?
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Limitations and Future Work

» Support for machine integers/floating point numbers ?
» The denotation/proof is done on arbitrary size integers

Fixpoint denot_int_exp (E: env) (e: exp) : bool

» Define a new version of the denotation
> Use cvcd/Z37?
» Invariant discovery
> k-induction is not always sufficient (ex: gilbreath shuffle)
» but they can be strengthened to become 1-inductive
node main (...) returns (ok: bool);

var prop, inv : bool;
let (* Body of the program x)

prop = ...; (* Property of interest )
inv = ...; (* Additional invariant )
ok = prop and inv;

tel;

add automatically ? complex heuristics [{h27pion, Mebsout, Sticksel, and Tinelli (2016): ]

get invariant by calling Kind2
prove (once-and-forall) that adding the invariant can only lead to “less” true

vvyy
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