
Formal verification of Vélus programs with SMTCoq

Basile Pesin
Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France

SYNCHRON 2025

The Vélus compiler

Untyped
Lustre NLustre

Stc

ObcClightAssembly

parsing

dataflow
optimizations

i-translation

scheduling

s-translation

imperative
optimizations

generationcompilation by CompCert[
Blazy, Dargaye, and Leroy (2006): Formal Verification
of a C Compiler Front-End

]
printing

Lustre
elaboration transcription

source-to-source
rewriting

dataflow

transition systems

imperative

1/12

https://hal.inria.fr/inria-00106401/document
https://hal.inria.fr/inria-00106401/document

The Vélus compiler

Untyped
Lustre NLustre

Stc

ObcClightAssembly

parsing

dataflow
optimizations

i-translation

scheduling

s-translation

imperative
optimizations

generationcompilation by CompCert[
Blazy, Dargaye, and Leroy (2006): Formal Verification
of a C Compiler Front-End

]
printing

Lustre
elaboration transcription

source-to-source
rewriting

dataflow

transition systems

imperative

semantics

semantics

semantics

semanticssemantics

semantics

1/12

https://hal.inria.fr/inria-00106401/document
https://hal.inria.fr/inria-00106401/document

The Vélus compiler

Untyped
Lustre NLustre

Stc

ObcClightAssembly

parsing

dataflow
optimizations

i-translation

scheduling

s-translation

imperative
optimizations

generationcompilation by CompCert[
Blazy, Dargaye, and Leroy (2006): Formal Verification
of a C Compiler Front-End

]
printing

Lustre
elaboration transcription

source-to-source
rewriting

dataflow

transition systems

imperative

semantics

semantics

semantics

semanticssemantics

semantics

1/12

https://hal.inria.fr/inria-00106401/document
https://hal.inria.fr/inria-00106401/document

Running Example
node sum(i: int; r: bool) returns (c: int)
let

c = i + (if r then 0 else (0 fby c))
tel

Computes the sum of i, resets every r.

node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

b2 = true since last time b1 = true.

Normalized form (fby in its own equation).
Looks like NLustre.

node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

If i non-negative since the last reset, then
sum is non-negative.

2/12

Running Example
node sum(i: int; r: bool) returns (c: int)
let

c = i + (if r then 0 else (0 fby c))
tel

Computes the sum of i, resets every r.

node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

b2 = true since last time b1 = true.

Normalized form (fby in its own equation).
Looks like NLustre.

node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

If i non-negative since the last reset, then
sum is non-negative.

2/12

Dataflow Semantics in Vélus
node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

Inductive sem_exp:
| Svar:
sem_var H x s →
sem_exp H (Evar x) s

| Sbinop:
sem_exp H e1 s1 →
sem_exp H e2 s2 →
lift2 op s1 s2 os →
sem_exp H b (Ebinop op e1 e2) os [...]

with sem_equation:
| Seq:
sem_exp H e s →
sem_var H x s →
sem_equation H (EqDef x e)

| Sfby:
sem_exp H e es →
os = fby (sem_const c0) es →
sem_var H (Var x) os →
sem_equation H (EqFby x c0 e) [...]

b1 ‹F › ‹T › ‹F › ‹F › ‹› ‹F › ‹T › …
b2 ‹F › ‹T › ‹T › ‹F › ‹› ‹T › ‹T › …
pb ‹T › ‹F › ‹T › ‹T › ‹› ‹F › ‹F › …
b ‹F › ‹T › ‹T › ‹F › ‹› ‹F › ‹T › …

with sem_node:
| Snode:
find_node f G = Some n →
sem_vars H n.(n_in) iss →
sem_vars H n.(n_out) oss →
Forall (sem_equation H n.(n_eqs)) →
sem_node f iss oss

3/12

Dataflow Semantics in Vélus
node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

Inductive sem_exp:
| Svar:
sem_var H x s →
sem_exp H (Evar x) s

| Sbinop:
sem_exp H e1 s1 →
sem_exp H e2 s2 →
lift2 op s1 s2 os →
sem_exp H b (Ebinop op e1 e2) os [...]

with sem_equation:
| Seq:
sem_exp H e s →
sem_var H x s →
sem_equation H (EqDef x e)

| Sfby:
sem_exp H e es →
os = fby (sem_const c0) es →
sem_var H (Var x) os →
sem_equation H (EqFby x c0 e) [...]

b1 ‹F › ‹T › ‹F › ‹F › ‹› ‹F › ‹T › …
b2 ‹F › ‹T › ‹T › ‹F › ‹› ‹T › ‹T › …
pb ‹T › ‹F › ‹T › ‹T › ‹› ‹F › ‹F › …
b ‹F › ‹T › ‹T › ‹F › ‹› ‹F › ‹T › …

with sem_node:
| Snode:
find_node f G = Some n →
sem_vars H n.(n_in) iss →
sem_vars H n.(n_out) oss →
Forall (sem_equation H n.(n_eqs)) →
sem_node f iss oss

3/12

Dataflow Semantics in Vélus
node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

Inductive sem_exp:
| Svar:
sem_var H x s →
sem_exp H (Evar x) s

| Sbinop:
sem_exp H e1 s1 →
sem_exp H e2 s2 →
lift2 op s1 s2 os →
sem_exp H b (Ebinop op e1 e2) os [...]

with sem_equation:
| Seq:
sem_exp H e s →
sem_var H x s →
sem_equation H (EqDef x e)

| Sfby:
sem_exp H e es →
os = fby (sem_const c0) es →
sem_var H (Var x) os →
sem_equation H (EqFby x c0 e) [...]

b1 ‹F › ‹T › ‹F › ‹F › ‹› ‹F › ‹T › …
b2 ‹F › ‹T › ‹T › ‹F › ‹› ‹T › ‹T › …
pb ‹T › ‹F › ‹T › ‹T › ‹› ‹F › ‹F › …
b ‹F › ‹T › ‹T › ‹F › ‹› ‹F › ‹T › …

with sem_node:
| Snode:
find_node f G = Some n →
sem_vars H n.(n_in) iss →
sem_vars H n.(n_out) oss →
Forall (sem_equation H n.(n_eqs)) →
sem_node f iss oss

3/12

Dataflow Semantics in Vélus
node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

Inductive sem_exp:
| Svar:
sem_var H x s →
sem_exp H (Evar x) s

| Sbinop:
sem_exp H e1 s1 →
sem_exp H e2 s2 →
lift2 op s1 s2 os →
sem_exp H b (Ebinop op e1 e2) os [...]

with sem_equation:
| Seq:
sem_exp H e s →
sem_var H x s →
sem_equation H (EqDef x e)

| Sfby:
sem_exp H e es →
os = fby (sem_const c0) es →
sem_var H (Var x) os →
sem_equation H (EqFby x c0 e) [...]

b1 ‹F › ‹T › ‹F › ‹F › ‹› ‹F › ‹T › …
b2 ‹F › ‹T › ‹T › ‹F › ‹› ‹T › ‹T › …
pb ‹T › ‹F › ‹T › ‹T › ‹› ‹F › ‹F › …
b ‹F › ‹T › ‹T › ‹F › ‹› ‹F › ‹T › …

with sem_node:
| Snode:
find_node f G = Some n →
sem_vars H n.(n_in) iss →
sem_vars H n.(n_out) oss →
Forall (sem_equation H n.(n_eqs)) →
sem_node f iss oss

3/12

Dataflow Semantics in Vélus
node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

Inductive sem_exp:
| Svar:
sem_var H x s →
sem_exp H (Evar x) s

| Sbinop:
sem_exp H e1 s1 →
sem_exp H e2 s2 →
lift2 op s1 s2 os →
sem_exp H b (Ebinop op e1 e2) os [...]

with sem_equation:
| Seq:
sem_exp H e s →
sem_var H x s →
sem_equation H (EqDef x e)

| Sfby:
sem_exp H e es →
os = fby (sem_const c0) es →
sem_var H (Var x) os →
sem_equation H (EqFby x c0 e) [...]

b1 ‹F › ‹T › ‹F › ‹F › ‹› ‹F › ‹T › …
b2 ‹F › ‹T › ‹T › ‹F › ‹› ‹T › ‹T › …
pb ‹T › ‹F › ‹T › ‹T › ‹› ‹F › ‹F › …
b ‹F › ‹T › ‹T › ‹F › ‹› ‹F › ‹T › …

with sem_node:
| Snode:
find_node f G = Some n →
sem_vars H n.(n_in) iss →
sem_vars H n.(n_out) oss →
Forall (sem_equation H n.(n_eqs)) →
sem_node f iss oss

3/12

Dataflow Semantics in Vélus
node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

Inductive sem_exp:
| Svar:
sem_var H x s →
sem_exp H (Evar x) s

| Sbinop:
sem_exp H e1 s1 →
sem_exp H e2 s2 →
lift2 op s1 s2 os →
sem_exp H b (Ebinop op e1 e2) os [...]

with sem_equation:
| Seq:
sem_exp H e s →
sem_var H x s →
sem_equation H (EqDef x e)

| Sfby:
sem_exp H e es →
os = fby (sem_const c0) es →
sem_var H (Var x) os →
sem_equation H (EqFby x c0 e) [...]

b1 ‹F › ‹T › ‹F › ‹F › ‹› ‹F › ‹T › …
b2 ‹F › ‹T › ‹T › ‹F › ‹› ‹T › ‹T › …
pb ‹T › ‹F › ‹T › ‹T › ‹› ‹F › ‹F › …
b ‹F › ‹T › ‹T › ‹F › ‹› ‹F › ‹T › …

with sem_node:
| Snode:
find_node f G = Some n →
sem_vars H n.(n_in) iss →
sem_vars H n.(n_out) oss →
Forall (sem_equation H n.(n_eqs)) →
sem_node f iss oss

3/12

Proving a program property
node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

I Goal: prove that ok is always true
I Against Vélus’ semantic model
I Carries to the generated C-code

In Rocq (simplified):
Lemma sum_obs_spec : ∀ xs ys,
sem_node G "obs" xs ys →
∀ n, ys n = [vtrue].

I How should we prove it ?

I Invert sem_node hypothesis ⇒ get unknown “history” with some hypotheses
I Now what ?
I Either do some complex reasoning by hand, maybe using Jeanmaire’s

semantics
[

Bourke, Jeanmaire, and Pouzet (2025): Functional Stream
Semantics for a Synchronous Block-Diagram Compiler

]
, or...

I Use model-checking to do it automatically

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property
node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

I Goal: prove that ok is always true
I Against Vélus’ semantic model
I Carries to the generated C-code

In Rocq (simplified):
Lemma sum_obs_spec : ∀ xs ys,
sem_node G "obs" xs ys →
∀ n, ys n = [vtrue].

I How should we prove it ?
I Invert sem_node hypothesis ⇒ get unknown “history” with some hypotheses
I Now what ?

I Either do some complex reasoning by hand, maybe using Jeanmaire’s
semantics

[
Bourke, Jeanmaire, and Pouzet (2025): Functional Stream
Semantics for a Synchronous Block-Diagram Compiler

]
, or...

I Use model-checking to do it automatically

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property
node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

I Goal: prove that ok is always true
I Against Vélus’ semantic model
I Carries to the generated C-code

In Rocq (simplified):
Lemma sum_obs_spec : ∀ xs ys,
sem_node G "obs" xs ys →
∀ n, ys n = [vtrue].

I How should we prove it ?
I Invert sem_node hypothesis ⇒ get unknown “history” with some hypotheses
I Now what ?
I Either do some complex reasoning by hand, maybe using Jeanmaire’s

semantics
[

Bourke, Jeanmaire, and Pouzet (2025): Functional Stream
Semantics for a Synchronous Block-Diagram Compiler

]
, or...

I Use model-checking to do it automatically

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property
node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

I Goal: prove that ok is always true
I Against Vélus’ semantic model
I Carries to the generated C-code

In Rocq (simplified):
Lemma sum_obs_spec : ∀ xs ys,
sem_node G "obs" xs ys →
∀ n, ys n = [vtrue].

I How should we prove it ?
I Invert sem_node hypothesis ⇒ get unknown “history” with some hypotheses
I Now what ?
I Either do some complex reasoning by hand, maybe using Jeanmaire’s

semantics
[

Bourke, Jeanmaire, and Pouzet (2025): Functional Stream
Semantics for a Synchronous Block-Diagram Compiler

]
, or...

I Use model-checking to do it automatically
4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property – Automatic approach

I Kind
[

Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

]
: automatic verif of Lustre programs

I Uses SMT-solving (Z3) + K-induction/Bounded Model Checking
I Let’s do the same, but in Rocq :)

Our approach:
I Compile a Vélus source program into NLustre, print its AST into a .v file
I Generates a parameterized boolean formula for the AST’s semantics
I Apply k-induction principle to specialize this formula
I Discharge the specialized formula with SMTCoq[

Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses

]

5/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

Proving a program property – Automatic approach

I Kind
[

Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

]
: automatic verif of Lustre programs

I Uses SMT-solving (Z3) + K-induction/Bounded Model Checking
I Let’s do the same, but in Rocq :)

Our approach:
I Compile a Vélus source program into NLustre, print its AST into a .v file
I Generates a parameterized boolean formula for the AST’s semantics
I Apply k-induction principle to specialize this formula
I Discharge the specialized formula with SMTCoq[

Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses

]

5/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

From Lustre to NLustre AST

Untyped
Lustre Lustre NLustre

parsing

dataflow
optimizations
+ inlining

elaboration transcription

source-to-source
rewriting

AST printing

node sum(i: int; r: bool) returns (c: int)
let

c = i + (if r then 0 else (0 fby c))
tel

node since(b1, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;
b = b2 and (b1 or pb);

tel

node obs(i: int; r: bool) returns (ok: bool)
let

ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

tel

Program Definition obs := {|
n_in := [(_i, (tyint, Cbase)); (_r, (tybool, Cbase))];
n_out := [(_ok, (tybool, Cbase))];
n_vars := [...];
n_eqs := [
EqFby v5 Cbase (Const 0) (Evar v3);
EqDef v4 (Ecase (Evar _r) [Evar v5; Econst 0])
EqDef v3 (Ebinop Oadd (Evar _i) (Evar v4));
EqFby v2 Cbase (Enum 1%nat) (Evar v1);
EqDef v1

(Ebinop Oand
(Ebinop Oge (Evar _i) (Econst 0))
(Ebinop Oor (Evar _r) (Evar v2)));

EqDef _ok
(Ecase (Evar v1)

[Eenum 1; Ebinop Oge (Evar v3) (Econst 0)]);
]

|}. 6/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
denot_cexp (H n) (H n _ok) (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (denot_bool_exp (Evar v1)))

(ifb (snd (denot_bool_exp (Evar v1)))
(denot_cexp (H n) (H n _ok) (Ebinop Oge (Evar v3) (Econst 0)))
(denot_cexp (H n) (H n _ok) (Eenum 1)))

(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
(denot_cexp (H n) (H n _ok) (Ebinop Oge (Evar v3) (Econst 0)))
(denot_cexp (H n) (H n _ok) (Eenum 1)))

(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
(let v := denot_int_exp (H n) (Ebinop Oge (Evar v3) (Econst 0)) in
(fst (H n _ok) <---> fst v) && (snd v <---> (snd (H n _ok) =? 1)))

(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
(let v := (let v1 := denot_int_exp (H n) (Evar v3) in

fst v1, snd v1 >=? snd (denot_int_exp (H n) (Econst 0)))) in
(fst (H n _ok) <---> fst v) && (snd v <---> (snd (H n _ok) =? 1)))

(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
(let v := (let v1 := H n v3 in

fst v1, snd v1 >=? snd (true, 0)))) in
(fst (H n _ok) <---> fst v) && (snd v <---> (snd (H n _ok) =? 1)))

(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
(let v := (fst (H n v3), snd (H n v3) <=? 0)) in
(fst (H n _ok) <---> fst v) && (snd v <---> (snd (H n _ok) =? 1)))

(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
((fst (H n _ok) <---> fst (H n v3))
&& ((snd (H n v3) <=? 0) <---> (snd (H n _ok) =? 1)))

(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool ∗ Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool ∗ bool.
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (H n v1))

(ifb (snd (H n v1))
((fst (H n _ok) <---> fst (H n v3))
&& ((snd (H n v3) <=? 0) <---> (snd (H n _ok) =? 1)))

((fst (H n _ok) <---> true) && (snd (H n _ok) =? 1)))
(negb (fst (H n _ok)))

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
ifb (denot_clock (H n) Cbase)

(fst (H n _ok)
&& hold

(fun m => denot_clock (H m) Cbase)
(snd (H n _ok) =? 0)
(fun m ⇒ denot_exp (H m) (H n _ok) (Evar v3))
n)

(negb (fst (H n _ok)) && snd (H n _ok) =? 0)
7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
ifb (true)

(fst (H n _ok)
&& hold

(fun m => denot_clock (H m) Cbase)
(snd (H n _ok) =? 0)
(fun m ⇒ denot_exp (H m) (H n _ok) (Evar v3))
n)

(negb (fst (H n _ok)) && snd (H n _ok) =? 0)
7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (H n _ok)
&& hold

(fun m => denot_clock (H m) Cbase)
(snd (H n _ok) =? 0)
(fun m ⇒ denot_exp (H m) (H n _ok) (Evar v3))
n

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (H n _ok)
&& (fix hold m :=

match n with
| O ⇒ snd (H n _ok) =? 0
| S m ⇒ Bool.ifb (denot_clock (H m) Cbase)

(denot_exp (H m) (H n _ok) (Evar v3))
(hold m)

end) n
7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (H n _ok)
&& (fix hold m :=

match n with
| O ⇒ snd (H n _ok) =? 0
| S m ⇒ denot_exp (H m) (H n _ok) (Evar v3)
end) n

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(* Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (H n _ok)
&& match n with

| O ⇒ snd (H n _ok) =? 0
| S n ⇒ denot_exp (H n) (H (S n) _ok) (Evar v3)
end

7/12

Boolean denotation for NLustre equations
Definition env := ident → (bool ∗ Z). (* clock, value *)
Definition hist : nat → env.
(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.

(* Correctness lemma *)
Lemma denot_equation_safe :

wt_equation G Γ equ →
sem_equation G H equ →
∀ n, denot_equation H equ n = true.

7/12

Automated goal and k-induction

Node-specific goal to prove automatically:
Lemma obs_denot_spec : ∀ H,

(∀ n, (forallb (fun e ⇒ denot_equ H e n) (n_eqs nd))) → (* H respects semantics *)
∀ n, (snd (H n _ok) =? 1). (* output is always true *)

Difficulties:
I SMT solvers cannot deal with (∀ n, ...) → (∀ n, ...)
I for combinatorial programs, we can prove

∀ n,
(forallb (fun e ⇒ denot_equ H e n) (n_eqs nd)) →
(snd (H n _ok) =? 1)

I for stateful nodes (with fby), we need to add a (k-)induction hypothesis.

8/12

K-induction tactic

[
Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

]
with
∆n := forallb (fun e ⇒ denot_equ H e n) (n_eqs nd)
Pn := snd (H n _ok) =? 1

Automatic tactic, but k must be specified by the user
9/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

K-induction tactic

[
Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

]
with
∆n := forallb (fun e ⇒ denot_equ H e n) (n_eqs nd)
Pn := snd (H n _ok) =? 1

First, apply the following lemma:
Lemma k_ind (k: nat) : ∀ (P: nat → Prop),

(∀ n, (n < k) → P n) →
(∀ n, (∀ m, m < k → P (n + m)) → P (k + n)) →
∀ n, P n.

Generates 2 goals
I First goal is split in k subgoals (n = 0, 1, ..., k − 1)
I Hypothesis of the second is specialized (m = 0, 1, ..., k − 1)

Automatic tactic, but k must be specified by the user
9/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

Solving boolean goals with SMTCoq

K-induction has generated k + 1 boolean subgoals

One of them (for our example) looks like this:

ifb (fst (H n _i) && (fst (H n _r) && true))
(ifb

(ifb (fst (H n var48))
(ifb (snd (H n var48) =? 1)%Z

((fst (H n _ok) <---> fst (H n var52)) &&
(fst (H n var52) && (snd (H n var52) >=? 0)%Z <--->

(snd (H n _ok) =? 1)%Z))
((fst (H n _ok) <---> true) &&

(true <---> (snd (H n _ok) =? 1)%Z)))
(negb (fst (H n _ok)) && (snd (H n _ok) =? 0)%Z) &&

((fst (H n var48) <---> fst (H n _i)) &&
(fst (H n _i) && fst (H n _r) &&

(fst (H n _i) && (snd (H n _i) >=? 0)%Z &&
(fst (H n _r) && fst (H n var49) &&

((snd (H n _r) =? 1)%Z || (snd (H n var49) =? 1)%Z))) <--->
(snd (H n var48) =? 1)%Z)) && (fst (H n var49) && b n) &&

((fst (H n var52) <---> fst (H n _i)) &&
ifb (fst (H n _i))

(snd (H n var52) =?
snd (H n _i) + snd (H n var53))%Z

(snd (H n var52) =? 0)%Z) &&
ifb (fst (H n _r))

(ifb (snd (H n _r) =? 1)%Z
((fst (H n var53) <---> true) && (snd (H n var53) =? 0)%Z)
((fst (H n var53) <---> fst (H n var54)) &&

ifb (fst (H n var54))
(snd (H n var53) =? snd (H n var54))%Z
(snd (H n var53) =? 0)%Z))

(negb (fst (H n var53)) && (snd (H n var53) =? 0)%Z) &&
(fst (H n var54) && b0 n))

(ifb (snd (H n _ok) =? 1)%Z
(ifb (fst (H (S n) _i) && (fst (H (S n) _r) && true))

(ifb
(ifb (fst (H (S n) var48))

(ifb (snd (H (S n) var48) =? 1)%Z
((fst (H (S n) _ok) <---> fst (H (S n) var52)) &&

(fst (H (S n) var52) &&
(snd (H (S n) var52) >=? 0)%Z <--->
(snd (H (S n) _ok) =? 1)%Z))

((fst (H (S n) _ok) <---> true) &&
(true <---> (snd (H (S n) _ok) =? 1)%Z)))

(negb (fst (H (S n) _ok)) &&
(snd (H (S n) _ok) =? 0)%Z) &&

((fst (H (S n) var48) <---> fst (H (S n) _i)) &&
(fst (H (S n) _i) && fst (H (S n) _r) &&

(fst (H (S n) _i) && (snd (H (S n) _i) >=? 0)%Z &&
(fst (H (S n) _r) && fst (H (S n) var49) &&

((snd (H (S n) _r) =? 1)%Z
|| (snd (H (S n) var49) =? 1)%Z))) <--->

(snd (H (S n) var48) =? 1)%Z)) &&
(fst (H (S n) var49) &&

((fst (H (S n) var49) <---> fst (H n var48)) &&
((snd (H n var48) =? 1)%Z <--->

(snd (H (S n) var49) =? 1)%Z))) &&
((fst (H (S n) var52) <---> fst (H (S n) _i)) &&

ifb (fst (H (S n) _i))
(snd (H (S n) var52) =?

snd (H (S n) _i) + snd (H (S n) var53))%Z
(snd (H (S n) var52) =? 0)%Z) &&

ifb (fst (H (S n) _r))
(ifb (snd (H (S n) _r) =? 1)%Z

((fst (H (S n) var53) <---> true) &&
(snd (H (S n) var53) =? 0)%Z)

((fst (H (S n) var53) <---> fst (H (S n) var54)) &&
ifb (fst (H (S n) var54))

(snd (H (S n) var53) =? snd (H (S n) var54))%Z
(snd (H (S n) var53) =? 0)%Z))

(negb (fst (H (S n) var53)) &&
(snd (H (S n) var53) =? 0)%Z) &&

(fst (H (S n) var54) &&
((fst (H (S n) var54) <---> fst (H n var52)) &&

ifb (fst (H n var52))
(snd (H (S n) var54) =? snd (H n var52))%Z
(snd (H (S n) var54) =? 0)%Z)))

(snd (H (S n) _ok) =? 1)%Z true) true) true) true) true = true

10/12

Solving boolean goals with SMTCoq

K-induction has generated k + 1 boolean subgoals

One of them (for our example) looks like this:

ifb (fst (H n _i) && (fst (H n _r) && true))
(ifb

(ifb (fst (H n var48))
(ifb (snd (H n var48) =? 1)%Z

((fst (H n _ok) <---> fst (H n var52)) &&
(fst (H n var52) && (snd (H n var52) >=? 0)%Z <--->

(snd (H n _ok) =? 1)%Z))
((fst (H n _ok) <---> true) &&

(true <---> (snd (H n _ok) =? 1)%Z)))
(negb (fst (H n _ok)) && (snd (H n _ok) =? 0)%Z) &&

((fst (H n var48) <---> fst (H n _i)) &&
(fst (H n _i) && fst (H n _r) &&

(fst (H n _i) && (snd (H n _i) >=? 0)%Z &&
(fst (H n _r) && fst (H n var49) &&

((snd (H n _r) =? 1)%Z || (snd (H n var49) =? 1)%Z))) <--->
(snd (H n var48) =? 1)%Z)) && (fst (H n var49) && b n) &&

((fst (H n var52) <---> fst (H n _i)) &&
ifb (fst (H n _i))

(snd (H n var52) =?
snd (H n _i) + snd (H n var53))%Z

(snd (H n var52) =? 0)%Z) &&
ifb (fst (H n _r))

(ifb (snd (H n _r) =? 1)%Z
((fst (H n var53) <---> true) && (snd (H n var53) =? 0)%Z)
((fst (H n var53) <---> fst (H n var54)) &&

ifb (fst (H n var54))
(snd (H n var53) =? snd (H n var54))%Z
(snd (H n var53) =? 0)%Z))

(negb (fst (H n var53)) && (snd (H n var53) =? 0)%Z) &&
(fst (H n var54) && b0 n))

(ifb (snd (H n _ok) =? 1)%Z
(ifb (fst (H (S n) _i) && (fst (H (S n) _r) && true))

(ifb
(ifb (fst (H (S n) var48))

(ifb (snd (H (S n) var48) =? 1)%Z
((fst (H (S n) _ok) <---> fst (H (S n) var52)) &&

(fst (H (S n) var52) &&
(snd (H (S n) var52) >=? 0)%Z <--->
(snd (H (S n) _ok) =? 1)%Z))

((fst (H (S n) _ok) <---> true) &&
(true <---> (snd (H (S n) _ok) =? 1)%Z)))

(negb (fst (H (S n) _ok)) &&
(snd (H (S n) _ok) =? 0)%Z) &&

((fst (H (S n) var48) <---> fst (H (S n) _i)) &&
(fst (H (S n) _i) && fst (H (S n) _r) &&

(fst (H (S n) _i) && (snd (H (S n) _i) >=? 0)%Z &&
(fst (H (S n) _r) && fst (H (S n) var49) &&

((snd (H (S n) _r) =? 1)%Z
|| (snd (H (S n) var49) =? 1)%Z))) <--->

(snd (H (S n) var48) =? 1)%Z)) &&
(fst (H (S n) var49) &&

((fst (H (S n) var49) <---> fst (H n var48)) &&
((snd (H n var48) =? 1)%Z <--->

(snd (H (S n) var49) =? 1)%Z))) &&
((fst (H (S n) var52) <---> fst (H (S n) _i)) &&

ifb (fst (H (S n) _i))
(snd (H (S n) var52) =?

snd (H (S n) _i) + snd (H (S n) var53))%Z
(snd (H (S n) var52) =? 0)%Z) &&

ifb (fst (H (S n) _r))
(ifb (snd (H (S n) _r) =? 1)%Z

((fst (H (S n) var53) <---> true) &&
(snd (H (S n) var53) =? 0)%Z)

((fst (H (S n) var53) <---> fst (H (S n) var54)) &&
ifb (fst (H (S n) var54))

(snd (H (S n) var53) =? snd (H (S n) var54))%Z
(snd (H (S n) var53) =? 0)%Z))

(negb (fst (H (S n) var53)) &&
(snd (H (S n) var53) =? 0)%Z) &&

(fst (H (S n) var54) &&
((fst (H (S n) var54) <---> fst (H n var52)) &&

ifb (fst (H n var52))
(snd (H (S n) var54) =? snd (H n var52))%Z
(snd (H (S n) var54) =? 0)%Z)))

(snd (H (S n) _ok) =? 1)%Z true) true) true) true) true = true

To solve it: verit tactic from SMTCoq
I Translates the goal into SMT
I Calls the veriT solver[

Bouton, Caminha B. de Oliveira, Déharbe, and Fontaine (2009): veriT:
an open, trustable and efficient SMT-solver

]
I Reconstructs a Rocq proof from the unsat certificate[

Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses

]
I Qed. :)

10/12

http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

Demonstration

Let’s hope the property is true !

11/12

Limitations and Future Work
I Support for machine integers/floating point numbers ?

I The denotation/proof is done on arbitrary size integers
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

I Define a new version of the denotation
I Use cvc4/Z3 ?

I Invariant discovery
I k-induction is not always sufficient (ex: gilbreath shuffle)
I but they can be strengthened to become 1-inductive

node main (...) returns (ok: bool);
var prop, inv : bool;
let (∗ Body of the program ∗)
prop = ...; (∗ Property of interest ∗)
inv = ...; (∗ Additional invariant ∗)
ok = prop and inv;

tel;
I add automatically ? complex heuristics [Champion, Mebsout, Sticksel, and Tinelli (2016):

The Kind 2 Model Checker]
I get invariant by calling Kind2
I prove (once-and-forall) that adding the invariant can only lead to “less” true

12/12

http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-319-41540-6_29

Limitations and Future Work
I Support for machine integers/floating point numbers ?

I The denotation/proof is done on arbitrary size integers
Fixpoint denot_int_exp (E: env) (e: exp) : bool ∗ Z.

I Define a new version of the denotation
I Use cvc4/Z3 ?

I Invariant discovery
I k-induction is not always sufficient (ex: gilbreath shuffle)
I but they can be strengthened to become 1-inductive

node main (...) returns (ok: bool);
var prop, inv : bool;
let (∗ Body of the program ∗)
prop = ...; (∗ Property of interest ∗)
inv = ...; (∗ Additional invariant ∗)
ok = prop and inv;

tel;
I add automatically ? complex heuristics [Champion, Mebsout, Sticksel, and Tinelli (2016):

The Kind 2 Model Checker]
I get invariant by calling Kind2
I prove (once-and-forall) that adding the invariant can only lead to “less” true

12/12

http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-319-41540-6_29

