Formal verification of Vélus programs with SMT Coq

Basile Pesin
Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France

SYNCHRON 2025

The Vélus compiler

source-to-source dataflow
rewriting optimizations

o]

> ustre »| NLustre
Lustre elaboration transcription

parsing

Untyped

dataflow i-translation

Y

imperative s-translation

Y

compilation by CompCert generation [
Assembly [€-=-=-=-=-=-=---cccccecma - Clight [« Obc
Blazy, Dargaye, and Leroy (2006): Formal Verification
' of a C Compiler Front-End
rintin . -
; P g imperative
optimizations

1/12

https://hal.inria.fr/inria-00106401/document
https://hal.inria.fr/inria-00106401/document

The Vélus compiler

source-to-source dataflow
l . rewriting optimizations
parsing

Untyped > Lustre — »| NLustre
Lustre elaboration L'_J transcription L_

dataflow : /\/\/\\‘j—translation

! semantics { s-translation

\ J

Y
compilation by CompCert generation \ [
Assembly [€-=-=-=-=-=-=---cccccecma - i Obc

|:B\azy‘ Dargaye, and Leroy (2006): Formal Verification

T of a C Compiler Front-End
rintin semantics . -
;p & imperative

optimizations

1/12

https://hal.inria.fr/inria-00106401/document
https://hal.inria.fr/inria-00106401/document

The Vélus compiler

source-to-source dataflow
l . rewriting optimizations
parsing

Untyped > Lustre — > NLustre
Lustre elaboration L'_J transcription L_

dataflow : /\/\/\\‘j—translation

! semantics { s-translation

\ J

Y
compilation by CompCert generation \ [
Assembly [€-=-=-=-=-=-=---cccccecma - i Obc

|:B\azy‘ Dargaye, and Leroy (2006): Formal Verification

T of a C Compiler Front-End
rintin semantics . -
;p & imperative

optimizations

1/12

https://hal.inria.fr/inria-00106401/document
https://hal.inria.fr/inria-00106401/document

Running Example

node sum(i: int; r: bool) returns (c: int)
let

¢ =1+ (if r then 0 else (0 fby c))
tel

Computes the sum of i, resets every r.

2/12

Running Example

node sum(i: int; r: bool) returns (c: int)
let

¢ =1+ (if r then 0 else (0 fby c))
tel

Computes the sum of i, resets every r.

node since(bl, b2: bool) returns (b: bool)

var pb : bool; b2 = true since last time bl = true.
let

pb = true fby b; Normalized form (£by in its own equation).
. ti = b2 and (bl or pb); Looks like NLustre.

e

node obs(i: int; r: bool) returns (ok: bool)
let
ok = if since(r, i >= 0)
then sum(i, r) >= 0 else true

If 1 non-negative since the last reset, then
sum is non-negative.

tel

2/12

Dataflow Semantics in Vélus

Inductive sem_exp: node since(bl, b2: bool) returns (b: bool)
| Svar: var pb : bool;
sem_var Hlx s — let

sem_exp H (
| Sbinop:

pb = true fby b;
b = b2 and (bl or pb);

sem_exp H el s1 — tel
sem_exp H e2 52 — vt | F T FH F o F D
L1ift2 op s1 s2 os — b2 | F T T F o I D
sem_exp H b (Ebinop op el e2) os [...]
with sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp He es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x c0 e) [...] sem_node f iss oss

3/12

Dataflow Semantics in Vélus

Inductive sem exp: node since(bl, b2: bool) returns (b: bool)
| Svar: var pb : bool;
sem_var Hx s — let
sem_exp H (Evar x) s pb = true fby b}
| Sbinop: b = b2 and (bl or pb);
sem_exp H el s1 — tel
sem_exp H e2 s2 — bt | T FH F o K
L1ift2 op s1 s2 os — b2 | F T T F o I D
sem_exp H b (Ebinop op el e2) os [...]
with sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp He es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x cO e) [...] sem_node f iss oss

3/12

Dataflow Semantics in Vélus

Inductive sem_exp: node since(bl, b2: bool) returns (b: bool)
| Svar: var pb : bool;
sem_var Hx s — let
sem_exp H (Evar x) s pb = true fby b;
| Sbinop: b = b2 and [(b1 or pbJ];
sem_exp H el s1 — tel
sem_exp H e2 s2 — bt | T FH F o K
L1ift2 op s1 s2 os — b2 | F T T F o I D
sem_exp H b (Ebinop op el e2) os [...]
7ith sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp He es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x cO e) [...] sem_node f iss oss

3/12

Dataflow Semantics in Vélus

Inductive sem_exp: node since(bl, b2: bool) returns (b: bool)
| Svar: var pb : bool;
sem_var Hx s — let
sem_exp H (Evar x) s pb = true fby b;
| Sbinop: [b=b2 and (b1 or pb); |
sem_exp H el s1 — tel
sem_exp H e2 s2 — bt | T FH F o K
L1ift2 op s1 s2 os — b2 | F T T F o I D
sem_exp H b (Ebinop op el e2) os [...]
with sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp He es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x cO e) [...] sem_node f iss oss

3/12

Dataflow Semantics in Vélus

Inductive sem_exp: node since(bl, b2: bool) returns (b: bool)
| Svar: var pb : bool;
sem_var Hx s — let
sem_exp H (Evar x) s pb = true 1by b;
| Sbinop: b = b2 and (bl or pb);
sem_exp H el s1 — tel
sem_exp H e2 s2 — bt | T FH F o K
L1ift2 op s1 s2 os — b2 | F T T F o I D
sem_exp H b (Ebinop op el e2) os [...]
with sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp He es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x cO e) [...] sem_node f iss oss

3/12

Dataflow Semantics in Vélus

Inductive sem_exp: [node since(bl, b2: bool) returns (b: bool) |
| Svar: var pb : bool;
sem_var Hx s — let
sem_exp H (Evar x) s pb = true fby b;
| Sbinop: b = b2 and (bl or pb);
sem_exp H el s1 — tel
sem_exp H e2 s2 — bt | T FH F o K
1ift2 op s1 s2 os — b2 | F D T F o T D
sem_exp H b (Ebinop op el e2) os [...]
with sem_equation: pb | < «FH T T o F
| Seq: b | T T FH o F D
sem_exp He s —
sem_var Hx s — with sem_node:
sem_equation H (EqDef x e) | Snode:
| Sfby: find_node f G = Some n —
sem_exp H e es — sem_vars H n.(n_in) iss —
os = fby (sem_const c0) es — sem_vars H n.(n_out) oss —
sem_var H (Var x) os — Forall (sem_equation H n.(n_egs)) —
sem_equation H (EqFby x cO e) [...] sem_node f iss oss

3/12

Proving a program property

» Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)

let

P> Against Vélus' semantic model ok = if since(r, i >= 0)

» Carries to the generated C-code cot then sun(i, r) >= 0 else true
e

In Rocq (simplified):

Lemma sum_obs_spec : V xs ys,
sem_node G "obs" xs ys —
V n, ys n = [vtrue].

» How should we prove it ?

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property

v

v

Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)
let
Against Vélus' semantic model ok = if since(r, i >= 0)
Carries to the generated C-code cot then sun(i, r) >= 0 else true
e

In Rocq (simplified):
Lemma sum_obs_spec : V xs ys
sem_node G "obs" xs ys —
V n, ys n = [vtrue].
How should we prove it ?
Invert sem_node hypothesis = get unknown “history” with some hypotheses
Now what 7

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property

v

vvyyy

Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)
let
Against Vélus' semantic model ok = if since(r, i >= 0)
Carries to the generated C-code col then sun(i, r) >= 0 else true
e

In Rocq (simplified):

Lemma sum_obs_spec : V xs ys,
sem_node G "obs" xs ys —
V n, ys n = [vtrue].

How should we prove it ?

Invert sem_node hypothesis = get unknown “history” with some hypotheses
Now what ?

Either do some complex reasoning by hand, maybe using Jeanmaire’s

SemantICS [Bourke, Jeanmaire, and Pouzet (2025): Functional Stream]' or...

Semantics for a Synchronous Block-Diagram Compiler

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property

v

vvyyy

v

Goal: prove that ok is always true node obs(i: int; r: bool) returns (ok: bool)
let
Against Vélus' semantic model ok = if since(r, i >= 0)
Carries to the generated C-code col then sun(i, r) >= 0 else true
e

In Rocq (simplified):

Lemma sum_obs_spec : V xs ys,
sem_node G "obs" xs ys —
V n, ys n = [vtrue].

How should we prove it ?

Invert sem_node hypothesis = get unknown “history” with some hypotheses
Now what ?

Either do some complex reasoning by hand, maybe using Jeanmaire’s

SemantICS [Bourke, Jeanmaire, and Pouzet (2025): Functional Stream]' or...

Semantics for a Synchronous Block-Diagram Compiler

Use model-checking to do it automatically

4/12

https://inria.hal.science/hal-05107499
https://inria.hal.science/hal-05107499

Proving a program property — Automatic approach

H Hagen and Tinelli (2008): Scaling Up the Formal Verifica- | . H H
> Klnd [tion of Lustre Programs with SMT-based Techniques } : automatic Ve”f Of LUStre programs

» Uses SMT-solving (Z3) + K-induction/Bounded Model Checking
» Let's do the same, but in Rocq :)

5/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

Proving a program property — Automatic approach

H Hagen and Tinelli (2008): Scaling Up the Formal Verifica- | . H H
> Klnd [Lion of Lustre Programs with SMT-based Techniques } : automatic Verlf Of LUStre programs

» Uses SMT-solving (Z3) + K-induction/Bounded Model Checking
» Let's do the same, but in Rocq :)

Our approach:
» Compile a Vélus source program into NLustre, print its AST into a .v file
» Generates a parameterized boolean formula for the AST's semantics
» Apply k-induction principle to specialize this formula
» Discharge the specialized formula with SMTCoq

Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses

5/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

From Lustre to NLustre AST

lparsing
Untyped

dataflow
optimizations
+ inlining

source-to-source
rewriting

> Lustre

Lustre

node sum(i: int; r: bool) returns (c: int)
let

c =1+ (if r then 0 else (0 fby c))
tel

node since(bl, b2: bool) returns (b: bool)
var pb : bool;
let

pb = true fby b;

elaboration

> LN Lustre

—J

transcription
1
Program Definition obs := {| A
n_in := [(_i, (tyint, Cbase)); (_r, (tybool, Cbase))];
n_out := [(_ok, (tybool, Cbase))];
n_vars = [...];
n_egs = [
EqFby v5 Cbase (Const 0) (Evar v3);
{ EqDef v4 (Ecase (Evar _r) [Evar v5; Econst 0])
EqDef v3 (Ebinop Oadd (Evar _i) (Evar v4));

!

b = b2 and (bl or pb);
tel

node obs(i: int; r: bool) returns (ok: bool)
let
ok = if since(r, i >=0)

EgFby v2 Cbase (Enum 1%nat) (Evar v1);
EqDef vi1

L3 { (Ebinop Oand

(Ebinop Oge (Evar _i) (Econst 0))
(Ebinop Oor (Evar _r) (Evar v2)));

—
AST printing

then sum(i, r) >= 0 else true EgDef _ok
tel { (Ecase (Evar v1)

[Eenum 1; Ebinop Oge (Evar v3) (Econst 0)]);

]
[}. 6/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.

(* Example (combinatorial) *)

denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Ecomnst 0)])) =
denot_cexp (Hn) (Hn _ok) (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (denot_bool_exp (Evar v1)))
(ifb (snd (denot_bool_exp (Evar v1)))
(denot_cexp (Hn) (H n _ok) (Ebinop Oge (Evar v3) (Econst 0)))
(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (H n v1))
(denot_cexp (Hn) (H n _ok) (Ebinop Oge (Evar v3) (Econst 0)))
(denot_cexp (H n) (H n _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

Fixpoint denot_int_exp (E: env) (e: exp) : bool * Z

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (H n v1))
(let v := denot_int_exp (H n) (Ebinop Oge (Evar v3) (Econst 0)) in
(fst (Hn _ok) <-—-> fst v) && (snd v <-—-> (snd (Hn _ok) =7 1)))
(denot_cexp (Hn) (Hn _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

Fixpoint denot_int_exp (E: env) (e: exp) : bool * Z

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (H n v1))
(let v := (let vl := denot_int_exp (H n) (Evar v3) in
fst v1, snd vl >=7? snd (denot_int_exp (H n) (Econst 0)))) in
(fst (Hn _ok) <-—-> fst v) && (snd v <-—=> (snd (H n _ok) =7 1)))
(denot_cexp (Hn) (Hn _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

Fixpoint denot_int_exp (E: env) (e: exp) : bool * Z

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (H n v1))
(let v := (let v1 :=Hn v3 in
fst v1, snd vl >=7? snd (true, 0)))) in
(fst (Hn _ok) <-—-> fst v) && (snd v <-—=> (snd (H n _ok) =7 1)))
(denot_cexp (Hn) (Hn _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

Fixpoint denot_int_exp (E: env) (e: exp) : bool * Z

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (H n v1))
(let v := (fst (Hn v3), snd (Hn v3) <=7 0)) in
(fst (Hn _ok) <-—-> fst v) && (snd v <-—-> (snd (Hn _ok) =7 1)))
(denot_cexp (Hn) (Hn _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

Fixpoint denot_int_exp (E: env) (e: exp) : bool * Z

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (H n v1))
((fst (Hn _ok) <---> fst (H n v3))
&& ((snd (Hn v3) <=7 0) <---> (snd (Hn _ok) =7 1)))
(denot_cexp (Hn) (Hn _ok) (Eenum 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool * Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_cexp (E: env) (v: bool % Z) (e: cexp) : bool.
Fixpoint denot_bool_exp (E: env) (e: exp) : bool * bool.

Fixpoint denot_int_exp (E: env) (e: exp) : bool * Z.

(* Example (combinatorial) *)
denot_equ H n (EqDef _ok (Ecase (Evar v1) [Eenum 1; Ebinop Oge (Evar v3) (Econst 0)])) =
ifb (fst (Hn v1))
(ifb (snd (Hn v1))
((fst (Hn _ok) <---> fst (H n v3))
&& ((snd (Hn v3) <=7 0) <---> (snd (Hn _ok) =7 1)))
((fst (Hn _ok) <---> true) && (snd (Hn _ok) =7 1)))
(negb (fst (Hn _ok)))

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool * Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
ifb (denot_clock (H n) Cbase)
(fst (Hn _ok)
&& hold
(fun m => denot_clock (H m) Cbase)
(snd (Hn _ok) =7 0)
(fun m = denot_exp (Hm) (H n _ok) (Evar v3))
n
)
(negb (fst (Hn _ok)) && snd (Hn _ok) =7 0)

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool * Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
ifb (true)
(fst (Hn _ok)
&& hold
(fun m => denot_clock (H m) Cbase)
(snd (Hn _ok) =7 0)
(fun m = denot_exp (Hm) (H n _ok) (Evar v3))
n
)
(negb (fst (Hn _ok)) && snd (Hn _ok) =7 0)

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& hold
(fun m => denot_clock (H m) Cbase)
(snd (Hn _ok) =7 0)
(fun m = denot_exp (Hm) (Hn _ok) (Evar v3))
n

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& (fix hold m :=
match n with
| 0= snd (Hn _ok) =7 0
| Sm = Bool.ifb (denot_clock (H m) Cbase)

(denot_exp (Hm) (H n _ok) (Evar v3))
(hold m)
end) n

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& (fix hold m :=
match n with
| 0= snd (Hn _ok) =7 0
| Sm = denot_exp (Hm) (Hn _ok) (Evar v3)
end) n

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.
Fixpoint denot_clock (E: env) (ck: clock) : bool.

(¥ Example (fby) *)
denot_equ H n (EqFby _ok Cbase (Const 0) (Evar v3)) =
fst (Hn _ok)
&& match n with
| 0= snd (Hn _ok) =7 0
| Sn = denot_exp (Hn) (H (S n) _ok) (Evar v3)
end

7/12

Boolean denotation for NLustre equations

Definition env := ident — (bool # Z). (* clock, value *)
Definition hist : nat — env.

(* Denotes the constraint induced by [eq] at cycle [n] on [H] *)
Definition denot_equ (H: hist) (eq: equation) (n: nat) : bool.

(* Correctness lemma *)

Lemma denot_equation_safe :
wt_equation G [equ —
sem_equation G H equ —

V n, denot_equation H equ n = true.

7/12

Automated goal and k-induction

Node-specific goal to prove automatically:

Lemma obs_denot_spec : V H,
(Vn, (forallb (fun e = denot_equ H e n) (n_eqs nd))) — (* H respects semantics x)
Vn, (snd (Hn _ok) =7 1). (x output is always true *)

Difficulties:
» SMT solvers cannot deal with (Vn, ...) — (Vn, ..)
» for combinatorial programs, we can prove

V n,
(forallb (fun e = denot_equ H e n) (n_egs nd)) —
(snd (Hn _ok) =7 1)

» for stateful nodes (with £by), we need to add a (k-)induction hypothesis.

8/12

K-induction tactic
Mg ANAIA--ANAy =72 PoAPLA--- APy with
JANSS.

An A1 A A Bk (e A Fzc Pyt
Po A Boia Aeeo A Pag, P, :=snd (Hn _ok) =71

Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

= forallb (fun e = denot_equ H e n) (n_egs nd)

Automatic tactic, but k must be specified by the user
9/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

K-induction tactic

AoAAL A AA, Eze PoAPLA---AP, With
A, := forallb (fun e = denot_equ H e n) (n_eqgs nd)

AnABapr A A AH(HI) a }:I[: Pn+(k+1)
Po A Boia Aeeo A Pag, P, :=snd (Hn _ok) =71

Hagen and Tinelli (2008): Scaling Up the Formal Verifica-
tion of Lustre Programs with SMT-based Techniques

First, apply the following lemma:

Lemma k_ind (k: nat) : V (P: nat — Prop),

(Vn, (n<k) — Pn) —
(Vn, (Vmm<k—=P(n+m)— P(k+n))—

¥V n, Pn.
Generates 2 goals

» First goal is split in k subgoals (n=0,1,....k — 1)

» Hypothesis of the second is specialized (m =0,1,....k — 1)

Automatic tactic, but k must be specified by the user

9/12

http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf
http://homepage.cs.uiowa.edu/~tinelli/papers/HagTin-FMCAD-08.pdf

Solving boolean goals with SMTCoq

st (et (62
G

K-induction has generated k + 1 boolean subgoals

ey

G varas) +7 DUz

G n vars2)

> e
o) et)1z <

One of them (for our example) looks like this

) ke
Cond (4 n vaxds) =7 DY) <

i n vards) =7 1U2) &k (et (1 0 vards) ke b 1) &8
"

nd CH n varss) =7 0)42)
H o varsa)) &k

ena G 0 varsa))iz

Gond 8 3 vars3) 27 031>

(nogd (et (i n vars

b rar (45 W)
G

L m (et (1 (5w o) & tre)
(e (st (8) vara
(aeb (ond i C

»
) vards) =7 1

ot 6 (5 0 varsd) kb

D12 1

w0

(a0 (6" varsey o7 ana 1 vasezn
(ona (3 (3 n) varse 2

Cond G (5) _om)

DHz traey vhue) true) true) trve = erue

10/12

Solving boolean goals with SMTCoq i1

(i1b (ond (i n vards) =7 L%
(£t (1 n o6 <> fxc i novars2) b

K-induction has generated k + 1 boolean subgoals

.
o verdn) - DALY <o
) kb n) b

One of them (for our example) looks like this: L,

true) 42 (snd G b vars) =7 0)42)
o G varsa) kb

G varsaniz

) =7 oy
(fet (i n varsa)) w (and (i n varss) =7 O) &k

iz
G (o (TG 5 8 e (5w D w erue)

To solve it: verit tactic from SMTCoq g e e

(a6b (ond (8 (5) varas) =7 Y2
(ot (8 (S 1) _ok) <> fot (8 (5 1) varsd) kb
(ot (8 (s w) vars2) m

» Translates the goal into SMT B

(egd Ceot 8 (5 n) o)
Gkt s T S0 m

> Calls the veriT solver L

Bouton, Caminha B. de Oliveira, Déharbe, and Fontaine (2009): veriT: G GG b e G G B e
an open, trustable and efficient SMT-solver 11 Cone i (5 2 varss) =7 D e

(ond (8 (s 2) varis) =7 1I2)) b

P> Reconstructs a Rocq proof from the unsat certificate BT
Armand, Faure, Grégoire, Keller, Théry, and Werner (2011): A Modular @G e
Integration of SAT/SMT Solvers to Coq through Proof Witnesses (e (85 0 S 2 o)

)
a G o u

> Qed. :)

Cont B G5'm Cob> T DZ crae) erae) true) rue) true = erue

10/12

http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

Demonstration

Let's hope the property is true !

11/12

Limitations and Future Work

» Support for machine integers/floating point numbers ?
» The denotation/proof is done on arbitrary size integers

Fixpoint denot_int_exp (E: env) (e: exp) : bool

» Define a new version of the denotation
> Use cvcd/Z37?

12/12

http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-319-41540-6_29

Limitations and Future Work

» Support for machine integers/floating point numbers ?
» The denotation/proof is done on arbitrary size integers

Fixpoint denot_int_exp (E: env) (e: exp) : bool

» Define a new version of the denotation
> Use cvcd/Z37?
» Invariant discovery
> k-induction is not always sufficient (ex: gilbreath shuffle)
» but they can be strengthened to become 1-inductive
node main (...) returns (ok: bool);

var prop, inv : bool;
let (* Body of the program x)

prop = ...; (* Property of interest)
inv = ...; (* Additional invariant)
ok = prop and inv;

tel;

add automatically ? complex heuristics [{h27pion, Mebsout, Sticksel, and Tinelli (2016):]

get invariant by calling Kind2
prove (once-and-forall) that adding the invariant can only lead to “less” true

vvyy

12/12

http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-319-41540-6_29

