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This work

» optimize the mapping of DAG tasks

» onto clustered multicore

» limited memory and communication capacities
» problem and solution
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Fixed parameters in an industrial setting

» task model
% execution model
» platform
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Optimising the mapping

Context
» application as a DAG of tasks

» execution model:
local read/execute/remote write

» platform as interconnection of clusters (MPPA3 from Kalray)
typically programmed using List-Scheduling algorithm
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DAG to map Target platform (Kalray MPPA3©)
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Kalray MPPA3: varied communication latencies
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Kalray MPPA3: varied communication latencies

Three types of communications
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Kalray MPPA3: varied communication latencies

Three types of communications
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Our goal is to minimize inter-cluster communication
by mapping tasks accordingly
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The DAG application model

s
memory =10 (s )
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DAG with precedence constraints (—) and
both memory and communication costs

Constraints on tasks |
» tasks are non-preemptive

% atask can only run on a core if its data & code are stored in the local
memory

< tasks are periodic = code+data remain in local memory
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Model of execution

3-phase model of execution
1. loading phase: the data is read from main local memory
2. execution phase: the task is executed
3. storing phase: results are written in successor tasks’

memories

1. n, read from local memory (c,)

Co
2. n, execute on its core (c,)

5 30 T 10 3. ny writes to its successors

® ® S R
c, , » njandn,onc,
< the cost of the storing phase
depends on the mapping
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Mapping & ordering problem

DAG Partial Schedule .
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Deployment flow of DAGs to the MPPA platform

MIA: Multicore Interference Analysis [1] |
» input:  DAG + mapping on cores

» output time-triggered scheduling with interference delays

[1] https://www-verimag.imag.fr/multi-core-interference-analysis.html
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Two-phase solution

Phase 1

Determine the mapping of tasks to cores
1. try to minimize inter-core communication
2. constraint: local memory limits

Phase 2
Determine the mapping of cores to clusters
1. try to minimize inter-cluster communication
2. constraint: limited number of cores per cluster
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Phase 1: Mapping tasks to cores

constraint: 80 units
of memory per core

Communication aware mapping

Main idea is to map “greatest” successors “close” to their
predecessors,

< map sequences to the same core

< exploit potential parallelism as much as possible
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Phase 2a: Mapping cores to clusters
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Phase 2a: Mapping cores to clusters
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Phase 2a: Mapping cores to clusters
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Phase 2b: Mapping virtual clusters to physical
clusters

» map these virtual clusters to physical clusters,
considering the actual inter-cluster communication
latencies

» we perform an exhaustive search to find the optimal
mapping.

Key point: Handling latency heterogeneity on the Kalray
MPPA3

Minimize high cost communications between clusters
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Synthetic benchmark & experimental methodology

3240 DAGs with various characteristics |
» small (10 tasks) to large (280 tasks)
» parallelism level (mostly sequential to mostly parallel)
» inter-task communications (light to heavy)

Experimental methodology
» Compare with the SoA list-scheduling

» Criterion: global Worst Case Response Time (WCRT)
< computed by MIA

» Results: relative improvement (in %)
< + failures (not enough memory and/or cores)
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Results against a state of the art algorithm

Alternative Algo. (adapted to integrate memory constraints)

» List Scheduling-Based Mapping Algorithm (LSA)
< using Highest Level First with Estimated Time (HLFET) heuristic

Relative improvement (%)

60 L-56.55% 2982 cases (failures: 7.96% vs 0.46%)

0 20 40 60 80 100
Test cases (%)

Comparing our approach (Proposed Algorithm) to LSA in term of WCRT
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Comparison to a lower bound

Lower-bound mapping
Cumulative WCET of critical path = a lower-bound to WCRT

» not realistic (especially in multicluster)
< interference not integrated

» but still a lower bound — can be used to compare PA vs. LSA
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Comparing PA (left) and LSA (right) to lower bound, on a single cluster

B. Ferres (VERIMAG) Efficient DAG Mapping



Key takeaways

Given fixed parameters in an industrial setting
» task model: DAGs with precedence/communication costs
» execution model: Local read/execute/remote write

» platform: Kalray MPPA3 (clusters, memory banks,
heterogeneous laxities)

» communication-aware mapping: Minimize
inter-cluster/core overhead

» memory-constrained: limited memory capacities
» reduce the WCRT by up to 75% vs. classic list-scheduling
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Key takeaways (cont.)

» No platform/model changes needed - seamless
integration

» Predictable timing - hard real-time systems
» Better resource use - cost-effective scaling
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Questions
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More results
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