Communication and Shared Memory
Efficient Mapping Techniques of Real-Time
DAGs upon Clustered Multicore Platforms

Matheus Schuh Claire Maiza Pascal Raymond
Bruno Ferres Joél Goossens
Benoit Dupont de Dinechin

\/ @ kALRAY
erimac THE POWER OF MORE

B. Ferres (VERIMAG) Efficient DAG Mapping

This work

» optimize the mapping of DAG tasks

» onto clustered multicore

» limited memory and communication capacities
» problem and solution

B. Ferres (VERIMAG) Efficient DAG Mapping

Fixed parameters in an industrial setting

» task model
% execution model
» platform

B. Ferres (VERIMAG) Efficient DAG Mapping

Optimising the mapping

Context
» application as a DAG of tasks

» execution model:
local read/execute/remote write

» platform as interconnection of clusters (MPPA3 from Kalray)
typically programmed using List-Scheduling algorithm

(Y
\28/

S~ s _—F

et
(")
N

DAG to map Target platform (Kalray MPPA3©)

B. Ferres (VERIMAG) Efficient DAG Mapping

Kalray MPPA3: varied communication latencies

NoC T,
NoC R,

PEy | PE; Local
Memory

PE | PEs || 4MB || PE, || PE;

PEg || PEo PEy; || PEy3
PEy | PEpy PEy. || PEss
Cluster from the MPPA3 MPPA3

B. Ferres (VERIMAG) Efficien

Kalray MPPA3: varied communication latencies

Three types of communications

AXlgead

SE » intracore
—~ = » intracluster
» intercluster
: : Target
Cluster 0 Cluster 1

Source Cy | L
CL, 23 108
Two clusters from the MPPA3 CL, 108 23

Efficient DAG Mapping

erres (VERIMAG)

Kalray MPPA3: varied communication latencies

Three types of communications |

NoCT, | Al Xl
| ANl Ml
[=] % intracore (CL,.PE, - CLy.PE,)
PEE\ :Mg PE: PE; ’ PE’ PLT >> intraClUSter
e » intercluster
Target
Cluster 0 Cluster 1
Source Cy | L
CL, 23 108
Two clusters from the MPPA3 CL, 108 23

Efficient DAG Mapping

erres (VERIMAG)

Kalray MPPA3: varied communication latencies

Three types of communications

AXlgead
AXTire

AXlgead
AXlyirie

NoCT, |
NoCR, |

SE » intracore
== » intracluster (CL,.PE, = CL,.PE,,)

% intercluster

e

"
PE; | PRy || 4MP

Target
Cluster 0 Cluster 1
Source || G
CL, 23 108
Two clusters from the MPPA3 CL, 108 23

Efficient DAG Mapping

erres (VERIMAG)

Kalray MPPA3: varied communication latencies

Three types of communications

AXlgead

NoCT, |
Alye

NoCR, |

» intracore
% intracluster

o [os

"
PE; | PRy || 4ME

re [e e e » intercluster (cL,.PE, - CL,.PE,)
Target
Cluster 0 Cluster 1
Source CLy | CLy
CL, 23 108
Two clusters from the MPPA3 CL, 108 23

Efficient DAG Mapping

erres (VERIMAG)

Kalray MPPA3: varied communication latencies

Three types of communications

AXlgead
AXlyirie

NoCT, |
NoC R,

% intracore
% intracluster
% intercluster

RM [DSU

PE; | PE;

Target L L

Cluster 0 Cluster 1
Source 0 1
CL, 23 108
Two clusters from the MPPA3 CL, 108 23

Our goal is to minimize inter-cluster communication
by mapping tasks accordingly

B. Ferres (VERIMAG) Efficient DAG Mapping

The DAG application model

s
memory =10 (s)
(code + data) I
WCET (Cg) =5 O™ l

Single node of a DAG

ﬂs‘
\30/

DAG with precedence constraints (—) and
both memory and communication costs

Constraints on tasks |
» tasks are non-preemptive

% atask can only run on a core if its data & code are stored in the local
memory

< tasks are periodic = code+data remain in local memory

B. Ferres (VERIMAG)

Efficient DAG Mapping

Model of execution

3-phase model of execution
1. loading phase: the data is read from main local memory
2. execution phase: the task is executed
3. storing phase: results are written in successor tasks’

memories

1. n, read from local memory (c,)

Co
2. n, execute on its core (c,)

5 30 T 10 3. ny writes to its successors

® ® S R
c, , » njandn,onc,
< the cost of the storing phase
depends on the mapping

B. Ferres (VERIMAG) Efficient DAG Mapping

Mapping & ordering problem

DAG Partial Schedule .
o Ni ThIS talk Time-Triggered Schedule with Interference Delay
No N\ Cluster m
/N, L Ny reho el
Na Step 1 t
Mapping and order |No[Na| ooy [oo B . ‘
Ordering
Cnsa No [1] Ns | Ny
Platform

M clusters x N cores

Deployment flow of DAGs to the MPPA platform

MIA: Multicore Interference Analysis [1] |
» input: DAG + mapping on cores

» output time-triggered scheduling with interference delays

[1] https://www-verimag.imag.fr/multi-core-interference-analysis.html

B. Ferres (VERIMAG) Efficient DAG Mapping

https://www-verimag.imag.fr/multi-core-interference-analysis.html

Two-phase solution

Phase 1

Determine the mapping of tasks to cores
1. try to minimize inter-core communication
2. constraint: local memory limits

Phase 2
Determine the mapping of cores to clusters
1. try to minimize inter-cluster communication
2. constraint: limited number of cores per cluster

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 1: Mapping tasks to cores

constraint: 80 units
of memory per core

Communication aware mapping

Main idea is to map “greatest” successors “close” to their
predecessors,

< map sequences to the same core

< exploit potential parallelism as much as possible

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 1: Mapping tasks to cores

constraint: 80 units
of memory per core

Communication aware mapping

Main idea is to map “greatest” successors “close” to their
predecessors,

< map sequences to the same core

< exploit potential parallelism as much as possible

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 1: Mapping tasks to cores

constraint: 80 units
of memory per core

Communication aware mapping

Main idea is to map “greatest” successors “close” to their
predecessors,

< map sequences to the same core

< exploit potential parallelism as much as possible

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 1: Mapping tasks to cores

constraint: 80 units
of memory per core

Communication aware mapping

Main idea is to map “greatest” successors “close” to their
predecessors,

< map sequences to the same core

< exploit potential parallelism as much as possible

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 1: Mapping tasks to cores

constraint: 80 units
of memory per core

Communication aware mapping

Main idea is to map “greatest” successors “close” to their
predecessors,

< map sequences to the same core

< exploit potential parallelism as much as possible

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 2a: Mapping cores to clusters

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 2a: Mapping cores to clusters

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 2a: Mapping cores to clusters

26

B. Ferres (VERIMAG) Efficient DAG Mapping

Phase 2b: Mapping virtual clusters to physical
clusters

» map these virtual clusters to physical clusters,
considering the actual inter-cluster communication
latencies

» we perform an exhaustive search to find the optimal
mapping.

Key point: Handling latency heterogeneity on the Kalray
MPPA3

Minimize high cost communications between clusters

B. Ferres (VERIMAG) Efficient DAG Mapping

Synthetic benchmark & experimental methodology

3240 DAGs with various characteristics |
» small (10 tasks) to large (280 tasks)
» parallelism level (mostly sequential to mostly parallel)
» inter-task communications (light to heavy)

Experimental methodology
» Compare with the SoA list-scheduling

» Criterion: global Worst Case Response Time (WCRT)
< computed by MIA

» Results: relative improvement (in %)
< + failures (not enough memory and/or cores)

B. Ferres (VERIMAG) Efficient DAG Mapping

Results against a state of the art algorithm

Alternative Algo. (adapted to integrate memory constraints)

» List Scheduling-Based Mapping Algorithm (LSA)
< using Highest Level First with Estimated Time (HLFET) heuristic

Relative improvement (%)

60 L-56.55% 2982 cases (failures: 7.96% vs 0.46%)

0 20 40 60 80 100
Test cases (%)

Comparing our approach (Proposed Algorithm) to LSA in term of WCRT

B. Ferres (VERIMAG) Efficient DAG Mapping

Comparison to a lower bound

Lower-bound mapping
Cumulative WCET of critical path = a lower-bound to WCRT

» not realistic (especially in multicluster)
< interference not integrated

» but still a lower bound — can be used to compare PA vs. LSA

20 20
g 10 g 10
H 1% 5 A
£, [I I T
s-10 £-10
5 5
£ -16.89% E
220 220 |
ket 5
%—30 @ -30 +-30.12

40 261 cases (failures: 0.00% vs 0.00%) 40 353 cases (failures: 0.00% vs 0.00%)

o 20 40 60 80 100 0 20 40 60 80 100

Test cases (%) Test cases (%)

Comparing PA (left) and LSA (right) to lower bound, on a single cluster

B. Ferres (VERIMAG) Efficient DAG Mapping

Key takeaways

Given fixed parameters in an industrial setting
» task model: DAGs with precedence/communication costs
» execution model: Local read/execute/remote write

» platform: Kalray MPPA3 (clusters, memory banks,
heterogeneous laxities)

» communication-aware mapping: Minimize
inter-cluster/core overhead

» memory-constrained: limited memory capacities
» reduce the WCRT by up to 75% vs. classic list-scheduling

B. Ferres (VERIMAG) Efficient DAG Mapping

Key takeaways (cont.)

» No platform/model changes needed - seamless
integration

» Predictable timing - hard real-time systems
» Better resource use - cost-effective scaling

B. Ferres (VERIMAG) Efficient DAG Mapping

Questions

B. Ferres (VERIMAG) Efficient DAG Mapping

More results

[N
3

S AR
3 8 3 o & o

Relative improvement (%)

24.35%

71.85%

-56.55%

Relative improvement (%)

87.11%
-20
1080 cases (failures: 0.00% vs 0.00%) -31.51%

1024 cases (failures: 5.19% vs 1.39%)

20 40 60
Test cases (%)

80

80

100 0 20 40 60 80 100
Test cases (%)

o
<3

IS
o

15.15%

Relative improvement (%)
N
S

-20 | .23.58%

84.17%

878 cases (failures: 18.70% vs 0.00%)

20

80 100

Test cases (%)

LSA vs proposed algorithm: small, medium and big DAGs

	Introduction
	The platform
	The Application
	Mapping & Ordering Problem
	Proposed Solution for DAG Mapping & Ordering
	Results
	Conclusion
	Backup

