
Coherence and Determinacy
with Priorities and Clocks

Claude Stolze

joint work with Michael Mendler and Luigi Liquori

Otto-Friedrich Universität Bamberg
Centre INRIA d’Université Côte d’Azur

Motivations and context

• Aim: present the semantics of Synchronous Programming (SP) in
the framework of Process Algebras

- Make SP more appealing to other communities interested in
concurrent programming and concurrency theory

- Develop and study a shallow encoding of (multiclock) SP languages
in process algebras

• Our basic framework: CCS with clocks and priorities (CCSspt)
- Previous (async.) systems with clocks [Hoare]
- Previous (async.) systems with priorities [Camilleri & Winskel,

Phillips]
• CCSspt combines clocks and priorities in a synchronous setting

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 2

What is CCSspt?

• CCSspt is a process calculus with
- CCS (rendezvous) actions for communication [Milner]
- CSP (broadcast) actions for clocks [Hoare]
- Priorities for constructive scheduling [Camilleri & Winskel, Phillips]
- NEW: multiclock (GALS, . . .)
- NEW: both reduction semantics and labelled transition semantics

• A first glance of CCSspt was presented in Synchron 2023 (Kiel), an
encoding single-clock Esterel was presented in Synchron 2024
(Bamberg)

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 3

Syntax

P,Q ::= M thread
| p process name, p ∈ I
| P |Q parallel composition
| P \A restriction,A ⊆ A.
| P /C hiding,C ⊆ C

M,N ::= 0C inactive process
| α:L.P prefix, L ⊆ L
| M + N sum

Example:

User def= σ.σ.ctrlc.0σ

Prog def= hello:ctrlc.σ.Prog + ctrlc.0σ

Main def= (User |Prog) / σ \ ctrlc
Process names have arguments

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 4

Dealing with multiple clocks

• clocks(P) is the set of clocks which are active for (read “free in”) P
• P has to synchronize on clocks(P), but not on other clocks
• clocks(0C) = C: it blocks clocks only in set C, and does not care

about other clocks
• Example: 0σ | ρ.P can perform ρ.P, but 0ρ | ρ.P is stuck
• With multiclocks:

- σ.0{σ,ρ′} | ρ.0ρ | ρ′.0ρ′ can perform either σ or ρ, but not ρ′

• A process P is well-defined (noted WD(P)) if clocks(P) is constant
throughout its execution

• Example: a.σ.0σ + b.0σ is well-defined
• Counter-example: a.ρ.0σ is not well-defined. Indeed, if it performs

a and then ρ, it loses the clock ρ

• Another counter-example: a.0σ + b.0ρ

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 5

Scheduling with multiple clocks
• Each process has to be scheduled according to its clocks and the

blocking sets of its actions
• There are 2 issues to consider
• Issue 1: a:b.0σ | ρ.b.0ρ cannot perform a. Indeed, it is in

concurrence with ρ.b.0ρ which can perform b inside a σ-cycle
- In order to schedule the actions of P in a process P |Q, we have to

consider the actions of Q up to clocks(P). This set is called
iA∗

clocks(P)(Q)
• Issue 2: Scheduling a non deterministic choice + has to consider

immediate conflicts.

Ex: a:b.0σ | (c.b.0σ + a.0σ) cannot perform a, but the τ -transition
would make b disappear, so we can do it.

However: a:b.0σ | (b.0σ + a.0σ) should not be able to perform
either a or τ (immediate preemption)

- In that case, we consider the simple initial actions iA(P), i.e. the
actions a process can do immediately

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 6

Labelled Transition System
Example: User def= σ.σ.ctrlc.0σ

Prog def= hello:ctrlc.σ.Prog + ctrlc.0σ

Main def= (User |Prog) / σ \ ctrlc

• LTS: P α−→
B ι Q means P can become Q with action α and the

blocking constraints B, and the prediction information ι (omitted)

Prog hello−−−−→
(σ,ctrlc)

σ.Prog

User | σ.Prog σ−−−→
(σ,{})

σ.ctrlc.0σ |Prog

• Blocking constraints: each action has a set of contributing threads,
each one with its set of clocks and a set of blocking actions
Ex:
σ:{a,b}.0σ |σ:b.0σ,ρ |σ:c.0σ,ρ′

σ−−−−−−−−−−−−−−−−−−→
(σ,{a,b}),({σ,ρ},b),({σ,ρ′},c)

0σ | 0σ,ρ | 0σ,ρ′

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 7

Term Rewriting System

• The Term Rewriting System explains how processes reduce
internally:

hello.hello |Main −→ hello | (User | σ.Prog) / σ \ ctrlc

• We can reduce only if we know everything about the blocking
actions, e.g.

a:b |a
cannot reduce, because I don’t know if we can do b, but

(a:b |a) \b

can reduce

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 8

Equivalence

M1 + (M2 + M3) ≡ (M1 + M2) + M3

M1 + M2 ≡ M2 + M1

M + 0clocks(M) ≡ M

P1 | (P2 |P3) ≡ (P1 |P2) |P3

P1 |P2 ≡ P2 |P1

P | 0{} ≡ P

P \A ≡ P if L(P) ∩ (A ∪ A) = {}
P \A1 \A2 ≡ P \ (A1 ∪ A2)

P | (Q \A) ≡ (P |Q) \A if L(P) ∩ (A ∪ A) = {}

0C1 /C2 ≡ 0C1−C2

P /C ≡ P if L(P) ∩ C = {}
P /C1 /C2 ≡ P / (C1 ∪ C2)

P \A /C ≡ P /C \A
P | (Q /C) ≡ (P |Q) /C if L(P) ∩ C = {}

p ≡ P if p def= P

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 9

Reduction semantics

Definition : allows(ι,C, L) def= ι(C) ∩ L = {}

allows(iA∗
−(R), clocks(P), L) L ⊆ C ∪ A ∪ A

((τ :L.P + M) |R) /C \A −→ (P |R) /C \A
(R-Tau)

L ∪ L′ ⊆ C ∪ A ∪ A
allows(iA∗

−(R) ∪ (iA(N)− {a}), clocks(P), L)
allows(iA∗

−(R) ∪ (iA(M)− {a}), clocks(Q), L′)

((a:L.P + M) | (a:L′.Q + N) |R) /C \A −→ (P |Q |R) /C \A
(R-Com)

⋃
i Li ⊆ C ∪ A ∪ A σ ∈ C σ ̸∈ clocks(R)

∀i , allows(iA∗
−(R) ∪ (

⋃
j ̸=i iA(Mj)− {σ}), clocks(Pi), Li)

((σ:L1.P1 + M1) | · · · | (σ:Ln.Pn + Mn) |R) /C \A −→ (P1 | · · · |Pn |R) /C \A
(R-Clk)

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 10

Labelled Transition System

Definition : allows(ι,B) def= ∀(C, L) ∈ B, ι(C) ∩ L = {}

α:L.P α−−−−−−−−−→
{(clocks(P),L)} ι{} P

(Act)

M1
α−→
B ι P

M1 + M2
α−→
B ι∪(iA(M2)−{α}) P

(Sum1)

P1
ℓ−→

B1
ι1 P ′

1 P2
ℓ−→

B2
ι2 P ′

2 allows(ι1,B2) allows(ι2,B1)

P1 |P2
ℓ | ℓ−−−−→

B1∪B2
ι1+ι2 P ′

1 |P ′
2

(Com)

P α−→
B ι P ′ allows(iA∗

−(Q),B) α ̸∈ clocks(Q)

P |Q α−→
B ι+iA∗

−(Q) P ′ |Q
(Par1)

Restriction acts as in CCS, and hiding acts as in CSP

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 11

Properties

• The Term Rewriting System and the Labelled Transition System
are in harmony, i.e. their semantics coincide

Lemma (Harmony)
P −→ Q iff P τ−→

B ι Q′ ≡ Q

for some ι, Q′, B such that ∀(C,L) ∈ B, L = {}

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 12

Examples with multiple clocks
• Looping on clocks in C:

haltC
def= Σσ∈Cσ.haltC

• Get a string from keystrokes (at most one keystroke per ρ-cycle):

GetString def= return.string.haltρ
+ key :return.ρ.GetString
+ ρ:{return, key}.GetString

• Getting a string in a σ-cycle:

GetString | (string.σ.Q1 + σ:string.Q2)

• This is deterministic, thanks to priorities

• As GetString does not do σ-transition, iA∗
{σ}(GetString) contains

string, so it blocks the σ transition

• ρ is temporarily a “refinement” of σ [cf. Gemünde]

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 13

Examples with multiple clocks
• GetString with a bit of asynchrony:

GetString def= return.(string.0{} | haltρ)
+ key :return.ρ.GetString
+ ρ:{return, key}.GetString

• Getting a string asynchronously (in the spirit of GALS):

Bridge def= string.ok .haltσ + σ.Bridge
• Bridge sends the ok signal in the same cycle it received the string

• Bridge does not follow the maximal clock progress principle, it is
not deterministic either

• P def= ok .σ.P ′ + σ:ok .P
• We can consider

GetString |Bridge |P

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 14

Conclusion and Future Work
• Define a reasonable Church-Rosser property (Coherence)
• a property studied by Milner in Communication and Concurrency

P

Q1 Q2

R

α
B1

ι1

β
B2

ι2

β
B2

ι2
α

B1

ι1

• The top (rendez-vous) transitions in the CR diagram should not be
mutually exclusive

• Formally, ∀(C, L) ∈ B2, α ̸∈ L and ∀(C, L) ∈ B1, β ̸∈ L
• Ex: in a:b + b, the a- and b-transition are mutually exclusive
• Policies could help us ensure coherence
• Implementing a software prototype (WIP)

C. Stolze, M. Mendler, L. Liquori – Coherence and Determinacy with Priorities and Clocks 15

