Universitat Bamberg

INVENTORS FOR THE DIGITAL WORLD

Coherence and Determinacy
with Priorities and Clocks

Claude Stolze
joint work with Michael Mendler and Luigi Liquori

Otto-Friedrich Universitat Bamberg
Centre INRIA d’Université Cote d’Azur

Motivations and context

« Aim: present the semantics of Synchronous Programming (SP) in
the framework of Process Algebras
- Make SP more appealing to other communities interested in
concurrent programming and concurrency theory
- Develop and study a shallow encoding of (multiclock) SP languages
in process algebras

« Our basic framework: CCS with clocks and priorities (CCS®")

- Previous (async.) systems with clocks [Hoare]
- Previous (async.) systems with priorities [Camilleri & Winskel,
Phillips]

« CCS® combines clocks and priorities in a synchronous setting

I &zu’a,— I g C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

What is CCS®"'?

« CCS* s a process calculus with
- CCS (rendezvous) actions for communication [Milner]
- CSP (broadcast) actions for clocks [Hoare]
- Priorities for constructive scheduling [Camilleri & Winskel, Phillips]
- NEW: multiclock (GALS, ...)
- NEW: both reduction semantics and labelled transition semantics

« A first glance of CCS®™ was presented in Synchron 2023 (Kiel), an

encoding single-clock Esterel was presented in Synchron 2024
(Bamberg)

I &zu’a,— I C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Syntax

P.Q = M thread
| p process name,p € 7
| PlQ parallel composition
| P\A restriction, A C A.
| P/C hiding, C C C
M;N := O¢ inactive process
| «L.P prefix, LC L
| M+N sum
Example:
User ¥ o.0.ctrlc.0,
Prog % hello:ctric.o.Prog + ctrlc.0,
Main % (User| Prog) /o \ ctrlc

Process names have arguments

I &Z’Z&IG/— I 1 C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Dealing with multiple clocks

» clocks(P) is the set of clocks which are active for (read “free in”) P
» P has to synchronize on clocks(P), but not on other clocks

« clocks(0¢) = C: it blocks clocks only in set C, and does not care
about other clocks

» Example: O, | p.P can perform p.P, but 0, | p.P is stuck
o With multiclocks:
- 0.0¢5.,} | p.0, | p'.0,/ can perform either & or p, but not p’

» A process P is well-defined (noted WD(P)) if clocks(P) is constant
throughout its execution

» Example: a.0.0, + b.0, is well-defined

» Counter-example: a.p.0, is not well-defined. Indeed, if it performs
a and then p, it loses the clock p

 Another counter-example: a.0, + b.0,

C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Scheduling with multiple clocks

Each process has to be scheduled according to its clocks and the
blocking sets of its actions
There are 2 issues to consider
Issue 1: a:b.0, | p.b.0, cannot perform a. Indeed, it is in
concurrence with p.b.0, which can perform b inside a o-cycle
- In order to schedule the actions of P in a process P | Q, we have to
consider the actions of Q up to clocks(P). This set is called
iA:Iocks(P) (Q)
Issue 2: Scheduling a non deterministic choice + has to consider
immediate conflicts.

Ex: a:b.0, | (Q.E.OU +a.0,) cannot perform a, but the r-transition
would make b disappear, so we can do it.

However: a:b.0,, | (b.0, + a@.0,) should not be able to perform
either a or 7 (immediate preemption)
- In that case, we consider the simple initial actions iA(P), i.e. the
actions a process can do immediately

C. Stolze, M. Mendler, L. Liquori oherence and Determinacy with Priorities and Clocks

Labelled Transition System

Example: User % O'.O'.th/C.Og

Prog = hello:ctrlc.o.Prog + ctric.0,
Main (User | Prog) / o \ ctrlc

o LTS: P %h Q means P can become Q with action o and the
blocking constraints B, and the prediction information ¢ (omitted)
hello

Prog Tootia) o.Prog
User | o.Prog m o.ctrlc.0, | Prog

 Blocking constraints: each action has a set of contributing threads,
each one with its set of clocks and a set of blocking actions
Ex:
o:{a,b}.0,|0:b.0,,|0:c.0

0 o@D e berta 0o |0op 00

| &2

C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Term Rewriting System
e The Term Rewriting System explains how processes reduce
internally:
hello.hello | Main — hello | (User | o.Prog) / o \ ctrlc

» We can reduce only if we know everything about the blocking
actions, e.g.
ab|a

cannot reduce, because | don’t know if we can do b, but

(ab|3)\ b

can reduce

I &Z’Z&IG/— I C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Equivalence

My 4+ (Me +Ms) = (M + M) + Ms
Mi+M = M+ M,
M + Oclocks(y = M
Pi[(P|Ps) = (P1|P2)|Ps
P1|P2 = P2|P1
P|0{} = P
P\A = P it L(P) N (AUA) = {}
P\A1\A2 = P\(A1UA2)
PI(Q\A) = (P|Q)\A if L(P)N(AUA) ={}
001/02 = 001_02
P/C = P if L(P)NnC={}
P/C1/Cg = P/(C1U02)
P\A/C = P/C\A
PI(Q/C) = (P|Q)/C if L(PYNC={}
p = P itp & P

| &2

C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Reduction semantics

Definition : allows(t, C,L) £ ((C)NL = {}

allows(iA* (R), clocks(P),L) LC CUAUA
((r:L.P+M)|R)/C\A— (P|R)/C\A

(R-Tau)

LUL'CCUAUA
allows(iA™ (R) U (IA(N) — {a}), clocks(P), L)
allows(iA* (R) U (IA(M) — {a}), clocks(Q), L")
(@aLP+M)|(@L.Q+N)|[R)/C\A— (P|Q|R)/C\A (

R-Com)

U,LiCCUAUA oe€C o ¢clocks(R)

vi, allows(iA* (R) U (U, iA(M;) — {o}), clocks(P;), L;)

(o:L1.Py+My)| -+ |(o:Ln.Pn+My)|R)/C\NA— (P1| --- | Pn|R)/ C\ A

(R-CIK)

C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Labelled Transition System

Definition : allows(t, B) £ ¥(C, L) € B,.(C)NL = {}

: = (Act)
al.P {(clocks(P),L)} "+ P
My 25, P
(Sumy)

Mi + Mz Z».0AM)—{a}) P

Py BL> P, P, BL> P, allows(w1,Bs) allows(iz, By)

(Com)
P1|P23_1£L‘JZB—2>L1+L2P4|P§
P 5 P allows(iAZ(Q), B) « ¢ clocks(Q)
(Pary)

P1Q 5rvia- (@ P'1Q

Restriction acts as in CCS, and hiding acts as in CSP

I &Z’Z&Ia/— I C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Properties

» The Term Rewriting System and the Labelled Transition System
are in harmony, i.e. their semantics coincide
Lemma (Harmony)
P—QiffP 5, Q' =Q
for some ., Q', B such thatVv(C,L) € B,L = {}

.
I &zua,— I C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Examples with multiple clocks

 Looping on clocks in C:
haltc & Y ,eco.halte
» Get a string from keystrokes (at most one keystroke per p-cycle):

GetString £ return.string.halt,
+ key:return.p.GetString
+ p:{return, key}.GetString

« Getting a string in a o-cycle:
GetString | (string.o.Qq + o:string.Qy)
This is deterministic, thanks to priorities

As GetString does not do o-transition, iA7,,, (GetString) contains
string, so it blocks the o transition

» pis temporarily a “refinement” of o [cf. Gemiinde]

I &zu’a,— I C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Examples with multiple clocks

» GetString with a bit of asynchrony:

GetString # return.(string.0(; | halt,)
+ key:return.p.GetString
+ p:{return, key}.GetString

» Getting a string asynchronously (in the spirit of GALS):

def

Bridge % string.ok.halt, + ¢.Bridge
« Bridge sends the ok signal in the same cycle it received the string

» Bridge does not follow the maximal clock progress principle, it is
not deterministic either

« PZ 0k.o.P + o:0k.P
+ We can consider

GetString | Bridge | P

C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

Conclusion and Future Work

» Define a reasonable Church-Rosser property (Coherence)
 a property studied by Milner in Communication and Concurrency

(07 5 10.0 dlrauncauion ol process 10gic 2z

B1 Bz 11 Determinacy and Confluence 231

11.1 Determinacy 232
L
o

L 112 Preserving determinacy 235

2 Qz 11.3 Confluence 237

. . 11.4 Preserving confluence 243
~ B By .-

ﬂ “",L2 L1_-"'..a
o L

R
» The top (rendez-vous) transitions in the CR diagram should not be
mutually exclusive

e Formally, V(C,L) € Bo,a ¢ Land V(C,L) € By,8 ¢ L

e Ex:in a:b+ b, the a- and b-transition are mutually exclusive
« Policies could help us ensure coherence

« Implementing a software prototype (WIP)

I &zu’a,— I C. Stolze, M. Mendler, L. Liquori — Coherence and Determinacy with Priorities and Clocks

