

Universität Bamberg

Coherence and Determinacy with Priorities and Clocks

Claude Stolze

joint work with Michael Mendler and Luigi Liquori

Otto-Friedrich Universität Bamberg
Centre INRIA d'Université Côte d'Azur

Motivations and context

- Aim: present the semantics of **Synchronous Programming** (SP) in the framework of **Process Algebras**
 - Make SP more appealing to other communities interested in concurrent programming and concurrency theory
 - Develop and study a shallow encoding of (multiclock) SP languages in process algebras
- Our basic framework: CCS with clocks and priorities (CCS^{spt})
 - Previous (async.) systems with clocks [Hoare]
 - Previous (async.) systems with priorities [Camilleri & Winskel, Phillips]
- CCS^{spt} combines clocks and priorities in a synchronous setting

What is CCS^{spt}?

- CCS^{spt} is a process calculus with
 - CCS (rendezvous) actions for communication [Milner]
 - CSP (broadcast) actions for clocks [Hoare]
 - Priorities for constructive scheduling [Camilleri & Winskel, Phillips]
 - **NEW**: multiclock (GALS, ...)
 - **NEW**: both reduction semantics and labelled transition semantics
- A first glance of CCS^{spt} was presented in Synchron 2023 (Kiel), an encoding single-clock Esterel was presented in Synchron 2024 (Bamberg)

Syntax

$P, Q ::= M$	thread
p	process name, $p \in \mathcal{I}$
$P \parallel Q$	parallel composition
$P \setminus A$	restriction, $A \subseteq \mathcal{A}$.
P / C	hiding, $C \subseteq \mathcal{C}$
$M, N ::= 0_C$	inactive process
$\alpha : L.P$	prefix, $L \subseteq \mathcal{L}$
$M + N$	sum

Example:

$$\begin{aligned} \text{User} &\stackrel{\text{def}}{=} \sigma. \sigma. \overline{\text{ctrlc}}. 0_\sigma \\ \text{Prog} &\stackrel{\text{def}}{=} \overline{\text{hello}} : \text{ctrlc}. \sigma. \text{Prog} + \text{ctrlc}. 0_\sigma \\ \text{Main} &\stackrel{\text{def}}{=} (\text{User} \parallel \text{Prog}) / \sigma \setminus \text{ctrlc} \end{aligned}$$

Process names have arguments

Dealing with multiple clocks

- $\text{clocks}(P)$ is the set of clocks which are **active for** (read “free in”) P
- P **has to** synchronize on $\text{clocks}(P)$, but **not** on other clocks
- $\text{clocks}(0_C) = C$: it blocks clocks **only** in set C , and does not care about other clocks
- Example: $0_\sigma \mid \rho.P$ can perform $\rho.P$, but $0_\rho \mid \rho.P$ is stuck
- With multiclocks:
 - $\sigma.0_{\{\sigma, \rho'\}} \mid \rho.0_\rho \mid \rho'.0_{\rho'}$ can perform either σ or ρ , but not ρ'
- A process P is **well-defined** (noted $\text{WD}(P)$) if $\text{clocks}(P)$ is constant throughout its execution
- Example: $a.\sigma.0_\sigma + b.0_\sigma$ is well-defined
- Counter-example: $a.\rho.0_\sigma$ is **not** well-defined. Indeed, if it performs a and then ρ , it loses the clock ρ
- Another counter-example: $a.0_\sigma + b.0_\rho$

Scheduling with multiple clocks

- Each process has to be scheduled according to its clocks and the blocking sets of its actions
- There are 2 issues to consider
- Issue 1: $a:b.0_\sigma \mid \rho.\bar{b}.0_\rho$ **cannot** perform a . Indeed, it is in concurrence with $\rho.\bar{b}.0_\rho$ which can perform \bar{b} inside a σ -cycle
 - In order to schedule the actions of P in a process $P \mid Q$, we have to consider the actions of Q **up to** $\text{clocks}(P)$. This set is called $iA_{\text{clocks}(P)}^*(Q)$
- Issue 2: Scheduling a non deterministic choice $+$ has to consider immediate conflicts.

Ex: $a:b.0_\sigma \mid (c.\bar{b}.0_\sigma + \bar{a}.0_\sigma)$ **cannot** perform a , but the τ -transition would make \bar{b} disappear, so we can do it.

However: $a:b.0_\sigma \mid (\bar{b}.0_\sigma + \bar{a}.0_\sigma)$ should not be able to perform either a or τ (immediate preemption)

- In that case, we consider the simple initial actions $iA(P)$, i.e. the actions a process can do immediately

Labelled Transition System

Example:

$$\text{User} \stackrel{\text{def}}{=} \sigma. \sigma. \overline{\text{ctrlc}}. 0_\sigma$$

$$\text{Prog} \stackrel{\text{def}}{=} \overline{\text{hello:ctrlc}}. \sigma. \text{Prog} + \text{ctrlc}. 0_\sigma$$

$$\text{Main} \stackrel{\text{def}}{=} (\text{User} \mid \text{Prog}) / \sigma \setminus \text{ctrlc}$$

- LTS: $P \xrightarrow[B]{\alpha} Q$ means P can become Q with **action** α and the **blocking constraints** B , and the **prediction information** ι (omitted)

$$\begin{array}{ccc} \text{Prog} & \xrightarrow[\substack{(\sigma, \text{ctrlc})}]{} & \sigma. \text{Prog} \\ \text{User} \mid \sigma. \text{Prog} & \xrightarrow[\substack{(\sigma, \{\})}]{} & \sigma. \overline{\text{ctrlc}}. 0_\sigma \mid \text{Prog} \end{array}$$

- Blocking constraints:** each action has a set of contributing threads, each one with its set of clocks and a set of blocking actions

Ex:

$$\sigma: \{a, b\}. 0_\sigma \mid \sigma: b. 0_{\sigma, \rho} \mid \sigma: c. 0_{\sigma, \rho'} \xrightarrow[\substack{(\sigma, \{a, b\}), (\{\sigma, \rho\}, b), (\{\sigma, \rho'\}, c)}]{} 0_\sigma \mid 0_{\sigma, \rho} \mid 0_{\sigma, \rho'}$$

Term Rewriting System

- The Term Rewriting System explains **how** processes reduce internally:

$hello.hello \mid \text{Main} \longrightarrow hello \mid (\text{User} \mid \sigma.\text{Prog}) / \sigma \setminus \text{ctrlc}$

- We can reduce only if we know everything about the blocking actions, e.g.

$a:b \mid \bar{a}$

cannot reduce, because I don't know if we can do b , but

$(a:b \mid \bar{a}) \setminus b$

can reduce

Equivalence

$$M_1 + (M_2 + M_3) \equiv (M_1 + M_2) + M_3$$

$$M_1 + M_2 \equiv M_2 + M_1$$

$$M + 0_{\text{clocks}(M)} \equiv M$$

$$P_1 | (P_2 | P_3) \equiv (P_1 | P_2) | P_3$$

$$P_1 | P_2 \equiv P_2 | P_1$$

$$P | 0_{\{\}} \equiv P$$

$$P \setminus A \equiv P \quad \text{if } \mathcal{L}(P) \cap (A \cup \bar{A}) = \{\}$$

$$P \setminus A_1 \setminus A_2 \equiv P \setminus (A_1 \cup A_2)$$

$$P | (Q \setminus A) \equiv (P | Q) \setminus A \quad \text{if } \mathcal{L}(P) \cap (A \cup \bar{A}) = \{\}$$

$$0_{C_1} / C_2 \equiv 0_{C_1 - C_2}$$

$$P / C \equiv P \quad \text{if } \mathcal{L}(P) \cap C = \{\}$$

$$P / C_1 / C_2 \equiv P / (C_1 \cup C_2)$$

$$P \setminus A / C \equiv P / C \setminus A$$

$$P | (Q / C) \equiv (P | Q) / C \quad \text{if } \mathcal{L}(P) \cap C = \{\}$$

$$p \equiv P \quad \text{if } p \stackrel{\text{def}}{=} P$$

Reduction semantics

$$\text{Definition : } \text{allows}(\iota, C, L) \stackrel{\text{def}}{=} \iota(C) \cap \bar{L} = \{\}$$

$$\frac{\text{allows}(\text{iA}_-^*(R), \text{clocks}(P), L) \quad L \subseteq C \cup A \cup \bar{A}}{((\tau:L.P + M) \mid R) / C \setminus A \longrightarrow (P \mid R) / C \setminus A} \quad (R\text{-Tau})$$

$$\frac{\begin{array}{c} L \cup L' \subseteq C \cup A \cup \bar{A} \\ \text{allows}(\text{iA}_-^*(R) \cup (\text{iA}(N) - \{\bar{a}\}), \text{clocks}(P), L) \\ \text{allows}(\text{iA}_-^*(R) \cup (\text{iA}(M) - \{a\}), \text{clocks}(Q), L') \end{array}}{((a:L.P + M) \mid (\bar{a}:L'.Q + N) \mid R) / C \setminus A \longrightarrow (P \mid Q \mid R) / C \setminus A} \quad (R\text{-Com})$$

$$\frac{\bigcup_i L_i \subseteq C \cup A \cup \bar{A} \quad \sigma \in C \quad \sigma \notin \text{clocks}(R) \\ \forall i, \text{allows}(\text{iA}_-^*(R) \cup (\bigcup_{j \neq i} \text{iA}(M_j) - \{\sigma\}), \text{clocks}(P_i), L_i)}{(\sigma:L_1.P_1 + M_1) \mid \dots \mid (\sigma:L_n.P_n + M_n) \mid R) / C \setminus A \longrightarrow (P_1 \mid \dots \mid P_n \mid R) / C \setminus A} \quad (R\text{-Clk})$$

Labelled Transition System

Definition : $\text{allows}(\iota, B) \stackrel{\text{def}}{=} \forall (C, L) \in B, \iota(C) \cap \bar{L} = \{\}$

$$\frac{\alpha : L.P \xrightarrow[\{\text{clocks}(P), L\}]{\alpha} P}{M_1 \xrightarrow[B]{\alpha} P} \text{ (Act)}$$
$$\frac{M_1 \xrightarrow[B]{\alpha} P}{M_1 + M_2 \xrightarrow[B]{\alpha} \iota \cup (\text{iA}(M_2) - \{\alpha\}) P} \text{ (Sum}_1\text{)}$$
$$\frac{P_1 \xrightarrow[B_1]{\ell} P'_1 \quad P_2 \xrightarrow[B_2]{\bar{\ell}} P'_2 \quad \text{allows}(\iota_1, B_2) \quad \text{allows}(\iota_2, B_1)}{P_1 \mid P_2 \xrightarrow[B_1 \cup B_2]{\ell \mid \bar{\ell}} \iota_{\iota_1 + \iota_2} P'_1 \mid P'_2} \text{ (Com)}$$
$$\frac{P \xrightarrow[B]{\alpha} P' \quad \text{allows}(\text{iA}_-^*(Q), B) \quad \alpha \notin \text{clocks}(Q)}{P \mid Q \xrightarrow[B]{\alpha} \iota + \text{iA}_-^*(Q) P' \mid Q} \text{ (Par}_1\text{)}$$

Restriction acts as in CCS, and hiding acts as in CSP

Properties

- The Term Rewriting System and the Labelled Transition System are in harmony, i.e. their semantics coincide

Lemma (Harmony)

$$P \longrightarrow Q \text{ iff } P \xrightarrow[B]{\tau} Q' \equiv Q$$

for some ι, Q', B such that $\forall (C, L) \in B, L = \{\}$

Examples with multiple clocks

- Looping on clocks in C :

$$\text{halt}_C \stackrel{\text{def}}{=} \sum_{\sigma \in C} \sigma.\text{halt}_C$$

- Get a string from keystrokes (at most one keystroke per ρ -cycle):

$$\begin{aligned} \text{GetString} &\stackrel{\text{def}}{=} \text{return.} \overline{\text{string.}} \text{halt}_\rho \\ &+ \text{key:} \text{return.} \rho. \text{GetString} \\ &+ \rho: \{\text{return, key}\}. \text{GetString} \end{aligned}$$

- Getting a string in a σ -cycle:

$$\text{GetString} \mid (\text{string.} \sigma. Q_1 + \sigma: \text{string.} Q_2)$$

- This is deterministic, thanks to priorities
- As GetString does not do σ -transition, $\text{iA}_{\{\sigma\}}^*(\text{GetString})$ contains string , so it blocks the σ transition
- ρ is temporarily a “refinement” of σ [cf. Gemündé]

Examples with multiple clocks

- GetString with a bit of asynchrony:

$$\begin{aligned}\text{GetString} &\stackrel{\text{def}}{=} \text{return}.(\overline{\text{string}.0\{\}} \mid \text{halt}_\rho) \\ &+ \text{key}:\text{return}.\rho.\text{GetString} \\ &+ \rho:\{\text{return}, \text{key}\}.\text{GetString}\end{aligned}$$

- Getting a string asynchronously (in the spirit of GALS):

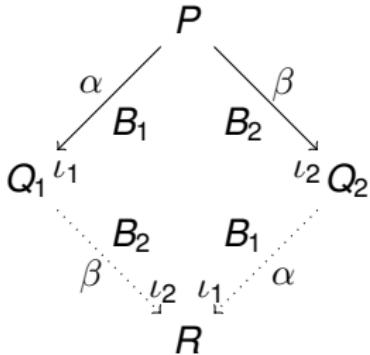
$$\text{Bridge} \stackrel{\text{def}}{=} \text{string}.\overline{\text{ok}}.\text{halt}_\sigma + \sigma.\text{Bridge}$$

- Bridge sends the $\overline{\text{ok}}$ signal in the same cycle it received the string
- Bridge does not follow the maximal clock progress principle, it is not deterministic either
- $P \stackrel{\text{def}}{=} \text{ok}.\sigma.P' + \sigma:\text{ok}.P$
- We can consider

$$\text{GetString} \mid \text{Bridge} \mid P$$

Conclusion and Future Work

- Define a **reasonable** Church-Rosser property (Coherence)
- a property studied by Milner in Communication and Concurrency



10.5 Stratification of process logic

11 Determinacy and Confluence	231
11.1 Determinacy	232
11.2 Preserving determinacy	235
11.3 Confluence	237
11.4 Preserving confluence	243

- The top (rendez-vous) transitions in the CR diagram **should not** be mutually exclusive
- Formally, $\forall (C, L) \in B_2, \alpha \notin L$ and $\forall (C, L) \in B_1, \beta \notin L$
- Ex: in $a:b + b$, the a - and b -transition are mutually exclusive
- Policies could help us ensure coherence
- Implementing a software prototype (WIP)