
Optimizing memory representation of state machines

Grégoire Bussone

ENS-PSL, Inria Paris, Parkas team

November 24, 2025

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 1 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 2 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 2 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 2 / 27



High-level construct for Lustre/Velus

A

E1

B

E2

c1

c2

automaton initially A
state A do E1
unless/until
| c1 then/continue B
state B do E2
unless/until
| c2 then/continue A

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 3 / 27



High-level construct for Lustre/Velus

A

E1

B

E2

c1

c2

automaton initially A
state A do E1
until
| c1 then/continue B
state B do E2
until
| c2 then/continue A

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 3 / 27



High-level construct for Lustre/Velus

A

E1

B

E2

c1

c2

automaton initially A
state A do E1
unless
| c1 then/continue B
state B do E2
unless
| c2 then/continue A

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 3 / 27



High-level construct for Lustre/Velus

A

E1

B

E2
H

c1

c2

automaton initially A
state A do E1
unless
| c1 continue B
state B do E2
unless
| c2 then A

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 3 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 3 / 27



Compilation into switches

automaton initially A
state A do E1 unless | c1 continue B
state B do E2 unless | c2 then A

(s, r) = (A, false) fby (ns, nr)
switch s
| A do reset

(ns, nr) = if c1 then (B, false) else (A, false)
every r

| B do reset
(ns, nr) = if c2 then (A, true) else (B, false)

every r
switch ns
| A do reset E1 every nr
| B do reset E2 every nr

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 4 / 27



Compilation to imperative code directly

automaton initially A
state A do E1 unless | c1 continue B
state B do E2 unless | c2 then A

switch (self.s)
case A:

if (self.r) self.c1.reset();
if (self.c1.step(...)) self.r = false; self.s = B;
else self.r = false; self.s = A;

case B: ...
switch (self.s)

case A:
if (self.r) self.E1.reset();
... = self.E1.step(...);

case B: ...

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 5 / 27



Compilation to imperative code directly

automaton initially A
state A do E1 unless | c1 continue B
state B do E2 unless | c2 then A

switch (self.s)
case A:

if (self.c1.step(...)) self.s = B;
else self.s = A;

case B:
if (self.c2.step(...))

self.c1.reset(); self.E1.reset(); self.s = A;
else self.s = B;

switch (self.s)
case A: ... = self.E1.step(...);
case B: ... = self.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 5 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 5 / 27



All transitions are by reset

A

E1

B

E2

c1

c2

switch (self.s)
case A:

if (self.c1.step(...))
self.c2.reset(); self.E2.reset(); self.s = B;

else self.s = A;
case B: ...

switch (self.s)
case A: ... = self.E1.step(...);
case B: ... = self.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 6 / 27



All transitions are by reset

A

E1

B

E2

c1

c2

switch (self.s)
case A:

if (self.u1.c1.step(...))
self.u2.c2.reset(); self.u2.E2.reset(); self.s = B;

else self.s = A;
case B: ...

switch (self.s)
case A: ... = self.u1.E1.step(...);
case B: ... = self.u2.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 6 / 27



Strongly connected components

A

E1

B

E2H
c1

switch (self.s)
case A:

if (self.c1.step(...)) self.s = B;
else self.s = A;

case B: self.s = B;
switch (self.s)

case A: ... = self.E1.step(...);
case B: ... = self.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 7 / 27



Strongly connected components

A

E1

B

E2H
c1

switch (self.s)
case A:

if (self.u1.c1.step(...))
self.u2.c2.reset(); self.u2.E2.reset(); self.s = B;

else self.s = A;
case B: self.s = B;

switch (self.s)
case A: ... = self.u1.E1.step(...);
case B: ... = self.u2.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 7 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 7 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 7 / 27



Unified internal representation (strong transitions)

A

b1 = c1

E1

B

0b2 = c2

1E2

b1 b2(R)

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 8 / 27



Unified internal representation (weak transitions)

A

b1 = c1
E1

B

0b2 = c2
E2

b1 b2

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 9 / 27



Unified internal representation (dynamic initialisation)

Init

b0 = c0

�

A

b1 = c1
E1

B

0

1b2 = c2
E2

b0

b1 b2

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 10 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 10 / 27



Translation (initialization)

A

0... reset S
∀S

...

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 11 / 27



Translation (step)

X

i... step Xi

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 12 / 27



Translation (transition)

X

i...

Y

i + 1...

...(R)

step Xi

reset Yj
∀j

step Yi+1

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 13 / 27



Translation (transition)

X

i...

Y

i + 1...

...

step Xi

step Yi+1

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 13 / 27



Instructions

� step Xi
reset Xi
step Xi

local Xi
reset Xi
step Xi

reset S
∀S ∈ P

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 14 / 27



Layout

L ::= Xi
(a single state)

|
∏

L
(a list of layouts with distinct memory locations)

|
∑

L
(a list of layouts sharing the same memory location)

At the beginning, we have
∏

S S

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 15 / 27



Table of contents

1 Introduction to state machines
Description
Compilation
Opportunities for optimization

2 Generic method
Unified internal representation
Modeling as imperative programs
Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 15 / 27



Interferences

Xi and Yj interfere in L if they are both stored in L, are different and
L =

∏
k Lk and they interfere in some Lk

or L =
∑

k Lk and they interfere in some Lk

or L =
∑

k Lk and they are stored in different Lk

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 16 / 27



Value analysis

�+ (S → (⊥+ R +>))

�+ (S → (⊥+ R +>))

...

⊥ R

>

�

S 7→ . . .

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 17 / 27



Value analysis

in

out

...

⊥ R

>

�

S 7→ . . .

in = S 7→ ⊥ if it is the initial state⊔
p∈preds p.out otherwise

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 17 / 27



Value analysis

in

out

reset S
∀S ∈ P

⊥ R

>

�

S 7→ . . .

out = � if in = �
out(S) = R if S ∈ P

⊥ if S interferes with a state in P
in(S) otherwise

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 17 / 27



Value analysis

in

out

step S

⊥ R

>

�

S 7→ . . .

out = � if in = �
out = � if in(S) = ⊥
out(S') = > if S = S'

⊥ if S and S' interfere
in(S') otherwise

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 17 / 27



Lifetime analysis

P(S)

P(S)

...

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 18 / 27



Lifetime analysis

in

out

use
op
def

use = ∅ if op = reset S ∀S ∈ P
{S} if op = step S
∅ if op = reset S step S

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 18 / 27



Lifetime analysis

in

out

use
op
def

def = P if op = reset S ∀S ∈ P
{S} if op = step S
{S} if op = reset S step S

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 18 / 27



Lifetime analysis

in

out

use
op
def

in = use ∪ (out \ def )
out =

⋃
s∈succs s.in

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 18 / 27



Add resets

Before any instruction, if the value analysis says that a state will be
already reset (and that every state which interferes with it will be already
corrupted), we can safely reset again this state during that instruction.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 19 / 27



Remove resets

After a reset instruction, if the lifetime analysis says that one of the reset
states is already dead, we can safely remove the reset of that state.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 20 / 27



Remove unreachable states

A state is unreachable if it is never reset and the value analysis says that
its step is unreachable. An unreachable state is removed from the layout
and its step is replaced by an unreachable instruction.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 21 / 27



Make states local

If a state appears only in a reset step and is dead after that, we can
remove the state from the layout and replace its reset step by a local
reset step.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 22 / 27



Change layout

Two states need to have distinct memory locations if they are different and
there is an instruction defining one while the other is alive after. We can
replace a layout by another valid one.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 23 / 27



Final pipeline

remove resets
remove unreachable states
add resets
remove resets
make states local
change layout

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 24 / 27



The rest of the compilation

rewrite this imperative code into an (even more general) automaton
form
typing: every line should define the same variables (a sufficient
condition would be that every path from top to bottom defines the
same variables)
causality and scheduling: an automaton is seen as an atomic equation
code generation: a series of switches

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 25 / 27



Possible improvements

find a way to express sharing in a compilation scheme à la Velus
refine the static analyses to take values into account
find good layout heuristics, or prove that simple ones are sufficient to
achieve optimality

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 26 / 27



Thank you for your attention!
Any questions?

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 27 / 27


	Introduction to state machines
	Description
	Compilation
	Opportunities for optimization

	Generic method
	Unified internal representation
	Modeling as imperative programs
	Analyses and transformations


