Optimizing memory representation of state machines

Grégoire Bussone
ENS-PSL, Inria Paris, Parkas team

November 24, 2025

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Table of contents

@ Introduction to state machines
@ Description
o Compilation
@ Opportunities for optimization

© Generic method
@ Unified internal representation
@ Modeling as imperative programs
@ Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Table of contents

@ Introduction to state machines
@ Description
o Compilation
@ Opportunities for optimization

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines

November 24, 2025

Table of contents

@ Introduction to state machines
@ Description

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

High-level construct for Lustre/Velus

cl

E2

c2

automaton initially A
state A do El
unless/until
| c1 then/continue B
state B do E2
unless/until
| c2 then/continue A

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

November 24, 2025

High-level construct for Lustre/Velus

cl

E2

c2

automaton initially A
state A do El
until
| c1 then/continue B
state B do E2
until
| c2 then/continue A

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

November 24, 2025

High-level construct for Lustre/Velus

C) cl

E2

automaton initially A
state A do El
unless
| c1 then/continue B
state B do E2
unless

| ¢2 then/continue A

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

November 24, 2025

High-level construct for Lustre/Velus

E2

cl
O
O

c2

automaton initially A
state A do El
unless
| c1 continue B
state B do E2
unless
| c2 then A

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

November 24, 2025

Table of contents

@ Introduction to state machines

o Compilation

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

Compilation into switches

automaton initially A
state A do E1 unless | cl continue B
state B do E2 unless | c2 then A

(s, r) = (A, false) fby (us, nr)
switch s
| A do reset
(ns, nr)
every r

if cl1 then (B, false) else (A, false)

| B do reset

(ns, nr) if c2 then (A, true) else (B, false)
every r

switch ns

| A do reset El every nr

| B do reset E2 every nr

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Compilation to imperative code directly

automaton initially A
state A do E1 unless | cl continue B
state B do E2 unless | c2 then A

switch (self.s)

case A:
if (self.r) self.cl.reset();
if (self.cl.step(...)) self.r = false; self.s = B;
else self.r = false; self.s = A;
case B:
switch (self.s)
case A:
if (self.r) self.El.reset();
. = self.El.step(...);
case B:

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Compilation to imperative code directly

automaton initially A

state A do E1 unless | cl1 continue B
state B do E2 unless | c2 then A

switch (self.s)

case A:
if (self.cl.step(...)) self.s = B;
else self.s = A;
case B:

if (self.c2.step(...))
self.cl.reset(); self.El.reset(); self.s = A;

else self.s = B;
switch (self.s)
case A: ... = self.El.step(...);
case B: =

self.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

November 24, 2025

Table of contents

@ Introduction to state machines

@ Opportunities for optimization

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

All transitions are by reset

B
C) cl
— E1l E2
) c2 <)
switch (self.s)
case A:
if (self.cl.step(...))
self.c2.reset(); self.E2.reset(); self.s = B;

else self.s = A;
case B:

switch (self.s)
case A:
case B:

self .El.step(...);
self.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

All transitions are by reset

C) cl N

c2

switch (self.s)
case A:
if (self.ul.cl.step(...))
self.u2.c2.reset(); self.u2.E2.reset(); self.s = B;

else self.s = A;
case B:
switch (self.s)
case A: ... = self.ul.El.step(...);
case B: =

self.u2.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Strongly connected components

switch (self.s)

case A:
if (self.cl.step(...)) self.s = B;
else self.s = A;

case B: self.s = B;

switch (self.s)
case A: ... = self.El.step(...);
case B: self.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Strongly connected components

— B 0D c1 @ E2

switch (self.s)
case A:
if (self.ul.cl.step(...))
self.u2.c2.reset(); self.u2.E2.reset(); self.s = B;
else self.s = A;
case B: self.s = B;
switch (self.s)
case A: ... = self.ul.El.step(...);
case B: self.u2.E2.step(...);

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Table of contents

© Generic method
@ Unified internal representation
@ Modeling as imperative programs
@ Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines

November 24, 2025

Table of contents

© Generic method
@ Unified internal representation

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

Unified internal representation (strong transitions)

cl

b1l b2(

E1l

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

b2

E2 1

November 24, 2025

Unified internal representation (weak transitions)

bl = c1 b2 = c2
E1l E2

bl b2

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Unified internal representation (dynamic initialisation)

Init A B

b0

bl = ci1 b2 = c2
E1l E2

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Table of contents

© Generic method

@ Modeling as imperative programs

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

Translation (initialization)

reset S

VS

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 20

Translation (step)

<. i step X;

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

Translation (transition)

step X;

.(R) vj

i+1
step Yi1

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Translation (transition)

step X;

i+1
step Yi1

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Instructions

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines

local X;
reset X;
4 step X; reset X;
step X;
step X;
reset S
vVsSeP

November 24, 2|

L == X;
(a single state)

| IIL

(a list of layouts with distinct memory locations)
| 2L

(a list of layouts sharing the same memory location)

At the beginning, we have [[S

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Table of contents

© Generic method

@ Analyses and transformations

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

Interferences

X; and Y; interfere in L if they are both stored in L, are different and

o L =[] Lk and they interfere in some L
@ or L =5, Ly and they interfere in some Ly
@ or L =75, Ly and they are stored in different L

November 24, 2025

Memory representation of state machines

Grégoire Bussone (ENS-PSL, Inria)

Value analysis

2+ (S—=(L+R+T))

4+ (S—=(L+R+T))

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Value analysis

in

in = S— 1 if it is the initial state
|_|p€preds p.out otherwise

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Value analysis

in
T S ..
reset S
vVSeP /\
1L R 4
out
out = 4 if in=4%
out(8) = R ifsepP
L if S interferes with a state in P

in(S) otherwise

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Value analysis

n

step S

4 ifin=4%
= 4 if in(8) = L

T its=s"
1 if Sand S' interfere
in(S") otherwise

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines November 24, 2025

Lifetime analysis

P(S)

P(s)

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

Lifetime analysis

use = if op=reset S VS€P

0
{S} if op=step S
0 if op =reset S step S

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines November 24, 2025

Lifetime analysis

def = P if op=reset S VS€P
{S} if op=step S
{S} if op =reset S step S

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines November 24, 2025

Lifetime analysis

in = wuseU (out\ def)
out = Usesuccs s.in

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines November 24, 2i

Before any instruction, if the value analysis says that a state will be
already reset (and that every state which interferes with it will be already
corrupted), we can safely reset again this state during that instruction.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Remove resets

After a reset instruction, if the lifetime analysis says that one of the reset
states is already dead, we can safely remove the reset of that state.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Remove unreachable states

A state is unreachable if it is never reset and the value analysis says that
its step is unreachable. An unreachable state is removed from the layout
and its step is replaced by an unreachable instruction.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Make states local

If a state appears only in a reset step and is dead after that, we can

remove the state from the layout and replace its reset step by a local
reset step.

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines

November 24, 2025

Change layout

Two states need to have distinct memory locations if they are different and
there is an instruction defining one while the other is alive after. We can
replace a layout by another valid one.

Grégoire Bussone (ENS-PSL, Inria)

Memory representation of state machines November 24, 2025

Final pipeline

remove resets

remove unreachable states
add resets

remove resets

make states local

change layout

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

The rest of the compilation

@ rewrite this imperative code into an (even more general) automaton
form

@ typing: every line should define the same variables (a sufficient
condition would be that every path from top to bottom defines the
same variables)

@ causality and scheduling: an automaton is seen as an atomic equation

@ code generation: a series of switches

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025 25 /27

Possible improvements

o find a way to express sharing in a compilation scheme a la Velus
@ refine the static analyses to take values into account

o find good layout heuristics, or prove that simple ones are sufficient to
achieve optimality

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025

Thank you for your attention!
Any questions?

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2i

	Introduction to state machines
	Description
	Compilation
	Opportunities for optimization

	Generic method
	Unified internal representation
	Modeling as imperative programs
	Analyses and transformations

