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High-level construct for Lustre/Velus

cl

E2

c2

automaton initially A
state A do El
unless/until
| c1 then/continue B
state B do E2
unless/until
| c2 then/continue A
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High-level construct for Lustre/Velus
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automaton initially A
state A do El
unless
| c1 then/continue B
state B do E2
unless
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High-level construct for Lustre/Velus

E2

cl
O
O

c2

automaton initially A
state A do El
unless
| c1 continue B
state B do E2
unless
| c2 then A
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Compilation into switches

automaton initially A
state A do E1 unless | cl continue B
state B do E2 unless | c2 then A

(s, r) = (A, false) fby (us, nr)
switch s
| A do reset
(ns, nr)
every r

if cl1 then (B, false) else (A, false)

| B do reset

(ns, nr) if c2 then (A, true) else (B, false)
every r

switch ns

| A do reset El every nr

| B do reset E2 every nr
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Compilation to imperative code directly

automaton initially A
state A do E1 unless | cl continue B
state B do E2 unless | c2 then A

switch (self.s)

case A:
if (self.r) self.cl.reset();
if (self.cl.step(...)) self.r = false; self.s = B;
else self.r = false; self.s = A;
case B:
switch (self.s)
case A:
if (self.r) self.El.reset();
. = self.El.step(...);
case B:
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Compilation to imperative code directly

automaton initially A

state A do E1 unless | cl1 continue B
state B do E2 unless | c2 then A

switch (self.s)

case A:
if (self.cl.step(...)) self.s = B;
else self.s = A;
case B:

if (self.c2.step(...))
self.cl.reset(); self.El.reset(); self.s = A;

else self.s = B;
switch (self.s)
case A: ... = self.El.step(...);
case B: =

self.E2.step(...);
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All transitions are by reset

B
C) cl
— E1l E2
) c2 <)
switch (self.s)
case A:
if (self.cl.step(...))
self.c2.reset(); self.E2.reset(); self.s = B;

else self.s = A;
case B:

switch (self.s)
case A:
case B:

self .El.step(...);
self.E2.step(...);
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All transitions are by reset

C) cl N

c2

switch (self.s)
case A:
if (self.ul.cl.step(...))
self.u2.c2.reset(); self.u2.E2.reset(); self.s = B;

else self.s = A;
case B:
switch (self.s)
case A: ... = self.ul.El.step(...);
case B: =

self.u2.E2.step(...);
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Strongly connected components

switch (self.s)

case A:
if (self.cl.step(...)) self.s = B;
else self.s = A;

case B: self.s = B;

switch (self.s)
case A: ... = self.El.step(...);
case B: self.E2.step(...);
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Strongly connected components

— B 0D c1 @ E2

switch (self.s)
case A:
if (self.ul.cl.step(...))
self.u2.c2.reset(); self.u2.E2.reset(); self.s = B;
else self.s = A;
case B: self.s = B;
switch (self.s)
case A: ... = self.ul.El.step(...);
case B: self.u2.E2.step(...);
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Unified internal representation (strong transitions)

cl

b1l b2(

E1l
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Unified internal representation (weak transitions)

bl = c1 b2 = c2
E1l E2

bl b2
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Unified internal representation (dynamic initialisation)

Init A B

b0

bl = ci1 b2 = c2
E1l E2
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Translation (initialization)

reset S

VS
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Translation (step)

<. i step X;
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Translation (transition)

step X;

.(R) vj

i+1
step Yi1

Grégoire Bussone (ENS-PSL, Inria) Memory representation of state machines November 24, 2025



Translation (transition)

step X;

i+1
step Yi1
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Instructions
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local X;
reset X;
4 step X; reset X;
step X;
step X;
reset S
vVsSeP

November 24, 2|




L == X;
(a single state)

| IIL

(a list of layouts with distinct memory locations)
| 2L

(a list of layouts sharing the same memory location)

At the beginning, we have [[ S
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Interferences

X; and Y; interfere in L if they are both stored in L, are different and

o L =[] Lk and they interfere in some L
@ or L =5, Ly and they interfere in some Ly
@ or L =75, Ly and they are stored in different L

November 24, 2025
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Value analysis

2+ (S—=(L+R+T))

4+ (S—=(L+R+T))
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Value analysis

in

in = S— 1 if it is the initial state
|_|p€preds p.out otherwise
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Value analysis

in
T S ..
reset S
vVSeP /\
1L R 4
out
out = 4 if in=4%
out(8) = R ifsepP
L if S interferes with a state in P

in(S) otherwise
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Value analysis

n

step S

4 ifin=4%
= 4 if in(8) = L

T its=s"
1 if Sand S' interfere
in(S") otherwise
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Lifetime analysis

P(S)

P(s)
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Lifetime analysis

use = if op=reset S VS€P

0
{S} if op=step S
0 if op =reset S step S
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Lifetime analysis

def = P if op=reset S VS€P
{S} if op=step S
{S} if op =reset S step S
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Lifetime analysis

in = wuseU (out\ def)
out = Usesuccs s.in
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Before any instruction, if the value analysis says that a state will be
already reset (and that every state which interferes with it will be already
corrupted), we can safely reset again this state during that instruction.
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Remove resets

After a reset instruction, if the lifetime analysis says that one of the reset
states is already dead, we can safely remove the reset of that state.
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Remove unreachable states

A state is unreachable if it is never reset and the value analysis says that
its step is unreachable. An unreachable state is removed from the layout
and its step is replaced by an unreachable instruction.
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Make states local

If a state appears only in a reset step and is dead after that, we can

remove the state from the layout and replace its reset step by a local
reset step.
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Change layout

Two states need to have distinct memory locations if they are different and
there is an instruction defining one while the other is alive after. We can
replace a layout by another valid one.
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Final pipeline

remove resets

remove unreachable states
add resets

remove resets

make states local

change layout
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The rest of the compilation

@ rewrite this imperative code into an (even more general) automaton
form

@ typing: every line should define the same variables (a sufficient
condition would be that every path from top to bottom defines the
same variables)

@ causality and scheduling: an automaton is seen as an atomic equation

@ code generation: a series of switches
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Possible improvements

o find a way to express sharing in a compilation scheme a la Velus
@ refine the static analyses to take values into account

o find good layout heuristics, or prove that simple ones are sufficient to
achieve optimality
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Thank you for your attention!
Any questions?
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