
Type Safety for Sizes without Hindrance 1

Marc Pouzet

ENS/INRIA, Paris

Workshop SYNCHRON
Aussois, France

Nov. 2025

1Joint work with Jean-Louis Colaço, Baptiste Pauget, Loic Sylvestre.
1 / 26

Vivre sans temps mort, jouir sans entraves 2

2Mustapha Khayati, 1968
2 / 26

The problem

• Write a generic definition f ⟨p⟩ of a system that depends on a parameter
p that is ultimately known at compile-time.

• The definition may be partial, i.e., undefined in some cases.

• When should the compiler detect it and complain?

3 / 26

Such examples exist when the target is hardware and software.

Hardware target: E.g., a n-bit adder, a memory decoder, an FFT can be
defined as a recursive function parameterized by a size.

What happen if the recursion does not terminate? if the sizes of the two
bit vectors of an adder are not equal?

Software target: E.g., operations on arrays using map/fold and update take
sized arrays; the modeling of a railway interlocking system in TECLA/HLL
is parameterized by an array of railway components.

What to do if an array is accessed out-of-the-bound? A recursion does not
terminate?

4 / 26

Several solutions exist.

5 / 26

Templates, compilation by evaluation, meta-programming:
Templates and macros: mark expressions that must be evaluated at
compile time; evaluate them; then compile.

E.g., Lisp macros, C++ templates.

Reduce at compile time expressions that only depend on compile-time
values. E.g.,VHDL and Verilog.

The compile-time evaluation may fail and produce a invalid circuit.

Define a DSL (Domain Specific Language) embedded in ML.

E.g., Lava, Hawk, Chisel.

Type safety for the elaboration phase; this elaboration may stop.

Meta-programming: the elaboration phase is well typed and produce a well
typed program.

E.g., meta-ML, meta-OCaml.

Dependent properties (e.g., related to sizes) are not ensured unless a
dependent type system is used for the meta-language.

6 / 26

Pros and Cons

Pros: very expressive! the evaluation language can be turing complete;
statically typed (e.g., Haskell, Ocaml, Scala).

Cons: the elaboration phase may fail.

Errors are detected very late.

A function definition may have no use at all.

let f = fun i -> let x = [||] in x.(i)

7 / 26

Dependent properties are difficult to ensure on the generated program.

Exploit features of the type system of the source language.

E.g., polymorphism, GADT, high-rank polymorphism, polymorphic
recursion.

val map : (’a -> ’b) -> (’a, ’n) array -> (’b, ’n) array

let a = [|1; 2; 3|] : (int, zero succ succ succ) array

Use a more expressive language for meta-programming. E.g., Coq, Lean,
Agda, F*, Liquid Haskell.

You may need to write the proof that a function is total, that two types are
equal, e.g., [n +m]int ?

= [m + n]int.

Fragile w.r.t changes of the program.

Compilation is done through maximal expansion (function calls, arrays)
may not be satisfactory (e.g., if the target is software).

8 / 26

Restricting the expressiveness of the surface layer

The language for static expressions is purposely restricted.

E.g., a limited set of operations on bounded types (integer range, +, *,
if/then/else, etc.; enumerated types).

E.g., Scade 6, HLL 3.

(* Example in Scade 6 *)
node f<<n>>(x: int^n; y: int^n) returns (o: int^n)

let o = map<<n>>*+*(x, y); tel;

node ff<<n>>(y: int^n) returns (o: int^n)
var c: int^2;
let c = 1^2; o = f<<n>>(x, y); tel;

node fff(x: int^42) returns (o: int^42)
let o = ff<<42>>(x); tel;

Where should the size error be detected?
3https://hal.science/hal-01799749v1

9 / 26

https://hal.science/hal-01799749v1

Scade 6: the case of arrays
Richard Bird’map/fold operators applied to sized arrays; array slices;
functional update. Cf. Lionel Morel’s PhD. thesis.

Almost 20 years of use.

Sizes are bounded integers: n + 1 ̸≤ n; n +m may not be representable.

Size expressions: multi-variable polynomials (+, -, *); but also
if/then/else, mod, max, min, etc.

Equality and inequality constraints, e.g., n −m.k − 1 ≤ 0.

Very little symbolic reasonning during type checking.

Do everything possible; keep underground constraints in type signatures
(e.g., check that n +m is representable); propagate and evaluate them
when constraints are closed.

Error messages come very late and are difficult to understand.

Size information not exploited in code generation.

Some functions definitions have no correct use.
10 / 26

Baptiste Pauget’s PhD thesis 5

An ML-like inference type system (“Polymorphic Types with Polynomial
Sizes” 4).

Size expressions are multi-variable polynomials.

Only consider equality constraints between polynomials, not inequalities.

Examples

let dot = fun u v -> fold (+)<_> 0 (map2 (*) <_> u v)

val dot : ’l. [’l]int → [’l]int → int

val window : ’l, ’k. α. <’k> → [’l+’k-1]α → [’l][’k]α

let convolution = fun k i -> map (dot k) <_> (window <_> i)

val convolution : ’l,’k.[’k]int → [’l+’k - 1]int → [’l]int
4https://www.di.ens.fr/~pouzet/bib/array23.pdf
5https://gitlab.inria.fr/parkas/baptistepauget

11 / 26

https://www.di.ens.fr/~pouzet/bib/array23.pdf
https://gitlab.inria.fr/parkas/baptistepauget

Paptiste Pauget’s proposal 6

First order unification + a decision algorithm for ∧i (Pi = 0).

Some of the size parameters are inferred, as for polymorphism in ML.

Size types are used in the generation of code.

Baptiste designed a code generation for array operations. The code is way
better than what existing compilers do (e.g., Scade 6, Heptagon, Lustre
V6).

Still, inequality constraints are unvoidable, in particular because sizes are
bounded integers.

What happen if the size language is not limited to multivariate
polynomials?

6It is “simple et de bon goût” (Paul Caspi)
12 / 26

A personal try.

13 / 26

• ML-like typing: Baptiste’s approach.

• Add a limited form of dependences on sizes in types.

• Replace “resolution” by “computation”: Scade 6’s approach.

• Correctness is simpler to prove.

• Add resolution for “confort” (e.g., detect error at early stages).

14 / 26

A demo with Zélus.

15 / 26

Examples from Nisan and Schocken’s book

16 / 26

Expressions and Equations:

e ::= λp.e | e e | (e, ..., e) | x | c | e fby e
| let E in e | let rec E in e
| match e with (Pi → Ei)i∈I

| e⟨s, ..., s⟩ | match size s with (Pi → Ei)i∈I
| def (f ⟨n, ..., n⟩ = e)i∈I in e

s ::= s + s | s × s | n | 42 | ...

E ::= p = e | E and ...E

p ::= x | x : t | p, ..., p

P ::= x | c

λ⟨n1, ..., nk⟩.e is a short-cut for def f ⟨n1, ..., nk⟩ = e in f with f ̸∈ FV (e).

17 / 26

The type language
Types a la ML + a language of sizes + dependences on sizes.

Two basic refinement types:

[s] = {v : int | 0 ≤ v < s} ⟨s⟩ = {v : int | v = s}
Type schemes σ and types t:

σ ::= ∀α.σ | t

t ::= b | α | t → t | t ∗ ... ∗ t | [s] | [s]t
| ∀n1, ..., nk .t withC

b ::= int | bool | ...
Executable constraints:

C ::= true | false | s ≤ s | s = 0 | s < s | f ⟨s, ..., s⟩
| C&C | match s with (Pi → Ci)i∈I
| if C thenC

else C
| let n = s inC

| def (f ⟨n, ..., n⟩ = Ci)i∈I inC
18 / 26

(var)
H(x) = t

H ⊢ x : t | true

(app)
H ⊢ f : t1 → t2 | C1 H ⊢ e : t1 | C2

H ⊢ f e : t2 | C1&C2

(fun)
H,H1 ⊢ p : t1 | C1 H,H1 ⊢ e : t2 | C2 FV (p) ∩ FV (C1&C2) = ∅

H ⊢ λp.e : t1 → t2 | C1&C2

(Eq)
H ⊢ p : t | C1 H ⊢ e : t | C2

H ⊢ p = e : [p | t] | C1&C2

(And)
∀i ∈ [1..n].H ⊢ Ei : Hi | Ci

H ⊢ E1 and ...En : H1 + ...+ Hn | C1&...&Cn

with [x | t] = [x : t] and [p1, ..., pn | t1 ∗ ... ∗ tn] = [p1 | t1] + ...+ [pn | tn]
19 / 26

(Let)
H ⊢ E : H1 | C1 H,H1 ⊢ e : t | C2

H ⊢ let E in e : t | C1&C2

(Let-rec)
H,H1 ⊢ E : H1 | C1 H,H1 ⊢ e : t | C2

H ⊢ let rec E in e : t | C1&C2

(match)
H ⊢ e : t | C ∀i ∈ [1..n].H ⊢ (Pi → Ei) : t → Hi | Ci

H ⊢ match e with (Pi → Ei)i∈[1..n] : H
′ | C&C1&...&Cn

(handler)
H,H1 ⊢ P : t H,H1 ⊢ E : H | C FV (P) = Dom(H1)

H ⊢ P → E : t → H | C

with Dom([x1 : t1; ...; xn : tn]) = {x1, ..., xn}
20 / 26

(fun-size)
H, n1 : [n1] ... nk : [nk] ⊢ e : t | C n1, ..., nk ̸∈ FV (H)

H ⊢ λ⟨n1, ..., nk⟩.e : ∀n1, ..., nk .t withC

(app-size)
H ⊢ f : ∀n1, ..., nk .t withC

H ⊢ f ⟨s1, ..., sk⟩ : t[s1/n1, ..., sk/nk] with let (ni = si)i∈I inC

(matchsize)
H ⊢ e : [s] | C ∀i ∈ I .H ⊢ (Pi → Ei) : [s] → Hi | Ci

H ⊢ match size e with (Pi → Ei)i∈I : H
′ | C&match s with (Pi → Ci)i∈I

21 / 26

Function definitions

• Recursion w.r.t a list of sizes ⟨n1, ..., nk⟩.

• E.g., n-bit linear or dichotomic adder.

• The size vector ⟨n1, ..., nk⟩ and sizes are never negative.

• Lexicographic order.

• Express in C that recursion is bounded.

22 / 26

The case of a single function definition

(def-rec)
H ′ = H, [f : ∀n⃗.t1 with f ⟨n⃗⟩] H ′ ⊢ λ⟨n⃗⟩.e1 : ∀n⃗.t1 withC1 Hf ⊢ e : t | C2

H ⊢ def f ⟨n⃗⟩ = e1 in e : t | def f ⟨n⃗⟩ = ifneg ⟨n⃗⟩ C1 inC2

with:

ifneg ⟨⟩ C def
= C

ifneg ⟨n1, ..., nk⟩ C
def
= if n1 < 0 then false

else ifneg ⟨n2, ..., nk⟩ C

23 / 26

This is not enough to ensure that recursion is bounded
Add a bound on size parameters.

t ::= ∀n⃗.t withC | ∀n⃗ < s⃗.t withC

where n⃗ < s⃗ is the strict lexicographical order.

Update the rule for recursion and application.

(def-rec)
H ′ = H, [f : ∀m⃗ < n⃗.t1[m⃗] with f ⟨m⃗⟩] H ′ ⊢ λ⟨n⃗⟩.e1 : ∀m⃗.t1[m⃗] withC1[m⃗] ...

H ⊢ def f ⟨n⃗⟩ = e1 in e : t | def f ⟨n⃗⟩ = ifneg ⟨n⃗⟩ C1[n⃗] inC2

(app-size)

H ⊢ f : ∀n⃗ < s⃗ ′.t withC

H ⊢ f ⟨s⃗⟩ : t[s⃗/n⃗] with let (ni = si)i in ifless ⟨s⃗⟩ ⟨s⃗ ′⟩C

24 / 26

ifless ⟨⟩ ⟨⟩C def
= C

ifless ⟨s1, ..., sk⟩ ⟨s ′1, ..., s ′k⟩C
def
= if s1 < s ′1 then true

else if s1 > s ′1 then false
else ifless ⟨s2, ..., sk⟩ ⟨s ′2, ..., s ′k⟩C

25 / 26

Conclusion

• This is work-in-progress.

• The ZRun interpreter 7 has been extended to deal with size arguments,
sizes in arrays and bounded recursion on a size argument.

• Non decreasing recursion, access out-of-the-bound, negative sizes are
detected at run-time.

• The new implementation of Zélus do have sizes and recursion;

• the type system is still limited: there is no inference mechanism for sizes.

• The use of Z3 and DV (Scade 6) has been tempted on a few simple
examples only (e.g., n-bit adder, or, iteration on an array).

Is-it a publishable work? Is-it more than a direct and ad-hoc instance of
HM(X) or a dependent type system (or type system with refinements)?

7https://github.com/marcpouzet/zrun/tree/2025
26 / 26

https://github.com/marcpouzet/zrun/tree/2025

