list
_

Modular Extraction of Lustre Models from C Code

The Frama-C/Synchrone Plugin

Loic Correnson Christophe Junke Fabien Siron

Université Paris-Saclay, CEA, List

B INSTITUT

[]
CARNOT WEIIVEYEIIY:)
g ‘ CEA LIST PARIS-SACLAY

1. Background

@ list
]

U \A‘\

General Context

In the context of an ASNR ! collaboration, we want to provide a tool to help analyzing
the code of nuclear control systems.

Those systems are synchronous-reactive programs considered as being written in C:
1. No assumption on the language used to model/specify the system.
» Part of the code can be automatically generated to C by some internal tools.
» Part of the code can be manually written in C.
2. No assumption on the tool correctness used to (partially) generate the code.
» For the generated code, the code generator cannot be considered as trusted.

'French Nuclear Safety and Radiation Protection Authority
@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 2/17
]

U \A‘\

Motivating Example

input 1 ——|
error 1 ——|

H H P | ———— output
input 2 saturation = linear — —> filters oup

error 2 ——)|

B Typically a cascade of nodes containing controllers and filters.
B Fach node has parameters set during initialization.
B Each flow has both a value and an error flag, encoded by a bitfield.

B Typical properties to validate:

» “The output is included in the range [min-e, max+e]."
» "“If one of the inputs has an error bit set, then the output shall have an error bit set.”
» “If no error bit is set, then the output behaves like its specification.”

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 3/17
]

Frama-C

This project is done in the context of the FRAMA-C platform, a framework dedicated
to the analysis of C code. It contains :

® Frama-C/EVA: abstract interpretation of C code

/EVA abstra . '
» Can infer data invariants (e.g., value intervals) I ama

» Can infer memory invariants (e.g., pointer aliases) Software Analyzers
» Give an over-approximation of all cycles
® Frama-C/WP: deductive verification of C code
» Hoare-style function contracts
» Can prove properties on an individual function.
» Not adapted to prove temporal properties.

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 4/17
]

Frama-C/Synchrone

Dedicated FRAMA-C plugin? , called FRAMA-C/SYNCHRONE:

B Based on FRAMA-C/EVA and FRAMA-C /WP to perform a modular extraction
of LUSTRE from C code

B Based on GATEL and KIND2 as backends to verify proof obligations.

?B Blanc et al. ‘Proving Properties of Reactive Programs From C to Lustre’. In: ERTS 2018. 2018.
4

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 5/17
]

Frama-C/Synchrone

‘)
! 1
| . . 1
| C elaboration C value analysis C extraction |
} |
| l |
‘ ! ;
! |
Lustre files —:ﬁ Lustre frontend Lustre link Lustre export | |
1 :
o Frama-C/Synchrone | ______)

GATeL /Kind2 provers

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 6/17
]

2. Modular Extraction of Lustre programs

@ list
]

Modular Extraction: global approach

©)

EVA Values @

Projection
C + Annotations . > Lustre
Fixpoint

@
WP l—)(Equations

Figure: Extraction Methodology

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 7/17
]

Modular Extraction: global approach

©)

EVA Values @

Projection
C + Annotations . > Lustre
Fixpoint

@
WP l—)(Equations

Figure: Extraction Methodology

B We expect a single top-level step function (and optionally an init function).

B \We expect that all the loops in the step function are bounded.

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 7/17
]

Modular Extraction : example

Let's take a simple example:

int x, y, reset, state;

void sum(int *p, int x)
{
*p += X;

}

/*@ input xz, reset;
output y; */
void counter(void)
{
if (reset)
state = 0;
else
sum(&state, x);
y = state;
¥

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 8/17
]

Modular Extraction : example

void sum(int *p, int x)
{
*P += X;

}

M’ = Mlp — M[p] + x]

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al.
]

(wp)

9/17

Modular Extraction : example

void sum(int *p, int x)
{
*P += X;

}

M’ = Mlp — M[p] + x] (wp)

M' = M[&state — M[&state] + x] (Eva)

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 9/17
]

Modular Extraction : example

void sum(int *p, int x)

{

*P += X;

}

@ list
]

M’ = Mlp — M[p] + x]
M' = M[&state — M[&state] + x]

. . . I = M|[&state
’;tate = istate + X with jtate ,[]
= M'[&state]

Istate

Modular Extraction of Lustre Models from C Code, L. Correnson et al.

(Projection)

9/17

Modular Extraction

Lustre generation

int x, y, reset, state;

void sum(int *p, int x)
{
*p += X;

}

/*@ input z, reset;
output y; */
void counter(void)
{
if (reset)
state = 0;
else
sum(&state, x);
y = state;
}

node sum_1(i_1, x_0: int) returns (i_2 : int)
let

i_2=1i_1 + x_0;
tel

node counter(x, reset : int) returmns (y : int)
let
(* locals *)
var i_0 : int;
(* states *)
il =0 -> pre(i_0);
(* body *)
if reset <> O then
i_0 = 0;
else
i_0 = sum_1(i_1, x);
(* outputs *)
y =1.0;
tel

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 10/17
]

@ list
]

3. Verification Strategy

Verification Strategy: Lustre contracts with LustreSpec

node main(x:int) returns (y, z:int)
behavior B {
assumes x_pos { x >=
ensures y_pos { y >=
ensures y_inc { y >= (0 -> pre(y)) }

0}
x }

}
begin
if (x > 0) then {
y =%
z = X;
} else {
y = 0 —> pre(y);
z = -Xx;
}
check z_pos { z >= 0 }
end

Highly inspired by ACSL, Very similar to CoCoSpec [3]

list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 11/17
]

Verification Strategy: Incremental Approach

B Properties expressed as observer flows
B Proof Engineering [4] approach for helping provers
B |ncremental steps instead of single untractable proof
» First prove property Py,
» then prove P; assuming Py,
» then prove P, assuming Py A Py

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al.
]

12/17

Verification Strategy: Incremental Approach

B Properties expressed as observer flows
B Proof Engineering [4] approach for helping provers
B |ncremental steps instead of single untractable proof

» First prove property Py,
» then prove P; assuming Py,
» then prove P, assuming Py A Py

B Some provers do not support this out of the box (GATelL)
B We encode this strategy as part of the export from LustreSpec to Lustre

— (Annex section)

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 12/17

GATeL - Constraint Based Verification

B Generate test data given a model and an objective
— Backward propagation of reachability objective at final cycle
— Lustre/Scade flows: input/output clocked values over time
— Reals, floats, modulo, delta, interval unions, clocks, etc.
— Bounded by max number of cycles and numerical bounds

— Detect and prove some patterns of K-induction

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 13/17
]

GATeL - Constraint Based Verification

B Generate test data given a model and an objective
— Backward propagation of reachability objective at final cycle
— Lustre/Scade flows: input/output clocked values over time
— Reals, floats, modulo, delta, interval unions, clocks, etc.
— Bounded by max number of cycles and numerical bounds

— Detect and prove some patterns of K-induction

B Model compilation and simulation
— Static simplifications assuming asserts
— Statically detect linear growth and infer bounds wrt. cycle

— Forward evaluator, over-approximating evaluator

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 13/17
]

GATeL - Constraint Based Verification

B Generate test data given a model and an objective
— Backward propagation of reachability objective at final cycle
— Lustre/Scade flows: input/output clocked values over time
— Reals, floats, modulo, delta, interval unions, clocks, etc.
— Bounded by max number of cycles and numerical bounds

— Detect and prove some patterns of K-induction

B Model compilation and simulation
— Static simplifications assuming asserts
— Statically detect linear growth and infer bounds wrt. cycle
— Forward evaluator, over-approximating evaluator

® COLIBRI - SMT solver

— Colibri2 reimplementation in OCaml

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 13/17

4. Conclusion

@ list
]

Frama-C Synchrone

B Frama-C plugin started in 2015 (today roughly 10K of code)
— Relies on FRAMA-C/EVA and FRAMA-C/WP for C extraction

— Second implementation that better scales

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al.
]

14/17

Frama-C Synchrone

B Frama-C plugin started in 2015 (today roughly 10K of code)
— Relies on FRAMA-C/EVA and FRAMA-C/WP for C extraction

— Second implementation that better scales

B Transformations
— C Code extractor
— Lustre module Linker
— Contract inlining: express contracts as check assertions
— Proof observers: encode assertions for incremental proofs

— Export to Lustre: use clocks (for now)

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 14/17
]

Frama-C Synchrone

B Frama-C plugin started in 2015 (today roughly 10K of code)
— Relies on FRAMA-C/EVA and FRAMA-C/WP for C extraction

— Second implementation that better scales

B Transformations
— C Code extractor
— Lustre module Linker
— Contract inlining: express contracts as check assertions
— Proof observers: encode assertions for incremental proofs
— Export to Lustre: use clocks (for now)
B Case study from ASNR
— Extraction from C code (approx. 50 functions)
— Linked with specification
— Export and proof with GATeL /Kind2

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 14/17
]

Related Work

B |n [2], COCOSIM provides an automated framework to translate SIMULINK
models to LUSTRE, for automated verification (KIND2 .. .)

» Use a subset of SIMULINK close to LUSTRE.

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 15/17
]

Related Work

B |n [2], COCOSIM provides an automated framework to translate SIMULINK
models to LUSTRE, for automated verification (KIND2 .. .)

» Use a subset of SIMULINK close to LUSTRE.

B |n [6], COCOMPILER provides a DSL lifter for LUSTRE from C code based on a
rewriting of VELUS using relational programming.

» C program should however be really close to the compiler’'s image to be extracted.

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 15/17
]

U w .

Related Work

B |n [2], COCOSIM provides an automated framework to translate SIMULINK
models to LUSTRE, for automated verification (KIND2 .. .)

» Use a subset of SIMULINK close to LUSTRE.

B |n [6], COCOMPILER provides a DSL lifter for LUSTRE from C code based on a
rewriting of VELUS using relational programming.

» C program should however be really close to the compiler’'s image to be extracted.

B In [5], PsYC (a synchronous variation of C) are translated to LUSTRE, for
automated verification (KIND2 .. .)

» Only the synchronous primitives and the control-flow is translated to LUSTRE.

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 15/17
]

Conclusion and Future Work

FRAMA-C/SYNCHRONE:
B provides modular extraction of LUSTRE from synchronous-reactive C code.
B has a dedicated specification language inspired by ACSL function contracts, called
LUSTRESPEC.

B has an incremental verification strategy inspired by FRAMA-C /WP using
external model-checker tools: GATEL and KIND2

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 16/17

Conclusion and Future Work

Future Work:
B we plan to improve the modularity aspects of the verification process by reusing
sub-nodes contracts as for compositional verification
B we plan to diversify the verification techniques:

» by extracting complex invariants resulting from abstract interpretation
» by implementing a dedicated WHY3 theory for proofs that are close to classical
deductive verification.

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 17/17
]

References |

[1]
]

[3]

[4]

list
]

B Blanc et al. ‘Proving Properties of Reactive Programs From C to Lustre'. In:
ERTS 2018. 2018.

Hamza Bourbouh et al. ‘CoCoSim, a code generation framework for
control/command applications: An overview of CoCoSim for multi-periodic
discrete Simulink models’. In: Embedded Real Time Systems (ERTS) 2020
ARC-E-DAA-TN74591 (2020).

Adrien Champion et al. ‘CoCoSpec: a mode-aware contract language for reactive
systems'. In: International Conference on Software Engineering and Formal
Methods. Springer. 2016, pp. 347-366.

Talia Ringer et al. ‘QED at Large: A Survey of Engineering of Formally Verified
Software’. In: CoRR abs/2003.06458 (2020). arXiv: 2003.06458. URL:
https://arxiv.org/abs/2003.06458.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 17/17

https://arxiv.org/abs/2003.06458
https://arxiv.org/abs/2003.06458

References |l

[5] Fabien Siron. ‘Methodology for the formal verification of temporal properties for
real-time safety-critical applications based on logical time’. PhD thesis. Université
Cote d'Azur, 2023.

[6] Naomi Spargo et al. “The CoCompiler: DSL Lifting via Relational Compilation’.
In: arXiv preprint arXiv:2510.00210 (2025).

@ list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 17/17

Verification Strategy: Encoding (1/2)

node __assume__ (goal: int; bi: bool; 1i: int) returns (p: bool)
let p = (not((i < goal)) or bi); tel

node __witness__ (goal: int; bi: bool; i: int) returns (p: bool)

node main(x:int) let p = ((i = goal) and not(bi)); tel

returns (y:int)

behavior B {

assumes x_pos {x >= 0}

ensures y_pos {y >= x}

ensures y_inc {y >= (0 -> pre(y))}
}

node main (x: int; __goal: int) returns (y: int; __assumed: bool; __reached: bool)
var
__check_behavior_B_ensures_El1: bool;
__check_behavior_B_ensures_E0: bool;
__behavior_B: bool;
let
__behavior_B = (x >= 0);
y = if (x > 0) then x else (0 -> (pre y));
__check_behavior_B_ensures_EO = (not(__behavior_B) or (y >= x));
__check_behavior_B_ensures_E1 = (not(__behavior_B) or (y >= (0 -> (pre y))));
__assumed = (__assume__(__goal, __check_behavior_B_ensures_E1, 2) and
__assume__(__goal, __check_behavior_B_ensures_EO, 1));
__reached = (__witness__(__goal, __check_behavior_B_ensures_E1, 2) or
__witness__(__goal check_behavior_B_ensures_EO0, 1));
tel

let
y = if (x> 0)

then x

else (0 -> pre(y));
tel

list Modular Extraction of Lustre Models from C Code, L. Correnson et al. 18/17
—

Verification Strategy: Encoding (2/2)

node prove_main_1 (x: int) returns (y: int; __property: bool)
var
__witness: bool;
__ind: bool;
yO: int;
__ind_1: bool;
__witness_2: bool;
let
yO, __ind_1, __witness_2 = main(x, 1);
y = y0;
__ind = __ind_1;
__Witness = __witness_2;

assert __ind;

__property = not(__witness);
tel

list Modular Extraction of Lustre Models from C Code,
—

node prove_main_2 (x: int) returns (y: int; __property: bool)
var
__witness: bool;
__ind: bool;
y3: int;
__ind_4: bool;
__witness_5: bool;
let
y3, __ind_4, __witness_5 = main(x, 2);
v =y
__ind = __ind_4;
__witness = __witness_5;

assert __ind;

__property = not(__witness);
tel

L. Correnson et al. 19/17

GATeL - successful proof

@ list
]

var

__witness: bool;

_ind: bool;

yo:int;

_ind_1: bool;

_ witness_2: bool;

let

y0, _ind_1, _witness_2 = main(x, 1);
¥=y0;

_ind=_ind 1;

_witness = _witness_2;
assert _ind;

= not(_witness);

tel

(* File "<unnamed buffer>", lines 2-8:)
node MESTERUETIW (x: int) returns (y: int;
var

_ witness: bool;

_ind: bool;

y3:ing;

_ind_4: bool;

_ witness_5: bool;

let

y3, _ind_4, _witness_5 = main(x, 2);
y=y3

_ind=_ind 4;

_ witness = _ witness_5;

assert _ind;

node JETERNETIIR] (x: int) returns {j: int;

[propety: boo)

Proof Log

and y<x)

* DECOMPOSITION INTO A DISJUNCTIION OF SUBGOALS (each subgoal mi

** DNF 1
(x>=0

d
_ proper{ andx>y)

* PROOF SESSION
Property leads to 1 DNF cases

Trying to prove DNF case 1/1
Proved (to be false) DNF case 1 (0.0 5)

Property has been proved to be valid (0.0399999999999991 s5)
Postcondition of property is sat

GATeL - counterexample

@ list
]

_assumed = (_assume_(_goal, _check_behavior B_ensures_E1, 2) and
assume_(_goal, _check_behavior_B_ensures_E0, 1));

_reached = (_witness_(_goal, _check_behavier_B_ensures_E1, 2) or
witness (_goal, _check_behavior B_ensures_E0, 1));

tel

(* File "<unnamed buffer=", lines 2-8: *)
node EERUEI| (x: int) returns (y:
var

__witness: bool;

_ind: bool:

y0:int;

_ind_1: bool;

__witness_2: bool;

let

y0, _ind_1, _witness_2 = main(x, 1);
y=yo;

ind=|

;. __property: bool)

assert _ind;
__property = not(_witness);
tel

(* File "<unnamed buffer=", lines 2-8: *)

node TSERIETIF (x: int) returns (§: int; [property; bool)
var

_ witness: bool;

_ind: bool;

y3:int;

:check:behavior:ﬁ:en;ure;:lﬂ = ‘Enoli:behavinr:Bi or (;‘ »= ((i; (pre y))

oW W Y W)| || W e
1]

X 1508 512

% 1508 512

T opr true false

EI= K

Counter example found for DNF case 1(0.0 5)

not(_ property)

	Background
	Modular Extraction of Lustre programs
	Verification Strategy
	Conclusion

