
Modular Extraction of Lustre Models from C Code

The Frama-C/Synchrone Plugin

Löıc Correnson Christophe Junke Fabien Siron

Université Paris-Saclay, CEA, List



1. Background



General Context

In the context of an ASNR 1 collaboration, we want to provide a tool to help analyzing
the code of nuclear control systems.

Those systems are synchronous-reactive programs considered as being written in C:

1. No assumption on the language used to model/specify the system.
▶ Part of the code can be automatically generated to C by some internal tools.
▶ Part of the code can be manually written in C.

2. No assumption on the tool correctness used to (partially) generate the code.
▶ For the generated code, the code generator cannot be considered as trusted.

1French Nuclear Safety and Radiation Protection Authority
Modular Extraction of Lustre Models from C Code, L. Correnson et al. 2/17



Motivating Example

saturation linear . . . filters

input 1
error 1

input 2
error 2

output
error

■ Typically a cascade of nodes containing controllers and filters.

■ Each node has parameters set during initialization.

■ Each flow has both a value and an error flag, encoded by a bitfield.
■ Typical properties to validate:

▶ “The output is included in the range [min-ϵ, max+ϵ].”
▶ “If one of the inputs has an error bit set, then the output shall have an error bit set.”
▶ “If no error bit is set, then the output behaves like its specification.”

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 3/17



Frama-C

This project is done in the context of the Frama-C platform, a framework dedicated
to the analysis of C code. It contains :

■ Frama-C/EVA: abstract interpretation of C code
▶ Can infer data invariants (e.g., value intervals)
▶ Can infer memory invariants (e.g., pointer aliases)
▶ Give an over-approximation of all cycles

■ Frama-C/WP: deductive verification of C code
▶ Hoare-style function contracts
▶ Can prove properties on an individual function.
▶ Not adapted to prove temporal properties.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 4/17



Frama-C/Synchrone

Proposition

Dedicated Frama-C plugina , called Frama-C/Synchrone:

■ Based on Frama-C/EVA and Frama-C/WP to perform a modular extraction
of Lustre from C code

■ Based on GATeL and Kind2 as backends to verify proof obligations.

aB Blanc et al. ‘Proving Properties of Reactive Programs From C to Lustre’. In: ERTS 2018. 2018.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 5/17



Frama-C/Synchrone

Frama-C Frama-C/Eva Frama-C/WP

Frama-C/Synchrone

C frontend

C elaboration C value analysis C extraction

Lustre frontend Lustre link Lustre export

GATeL/Kind2 provers

Lustre files

C files

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 6/17



2. Modular Extraction of Lustre programs



Modular Extraction: global approach

C + Annotations

WP

EVA

Equations

Values

Projection

Fixpoint
Lustre

1

2

3

Figure: Extraction Methodology

Assumptions

■ We expect a single top-level step function (and optionally an init function).

■ We expect that all the loops in the step function are bounded.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 7/17



Modular Extraction: global approach

C + Annotations

WP

EVA

Equations

Values

Projection

Fixpoint
Lustre

1

2

3

Figure: Extraction Methodology

Assumptions

■ We expect a single top-level step function (and optionally an init function).

■ We expect that all the loops in the step function are bounded.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 7/17



Modular Extraction : example

Let’s take a simple example:

int x, y, reset, state;

void sum(int *p, int x)

{

*p += x;

}

/*@ input x, reset;

output y; */

void counter(void)

{

if (reset)

state = 0;

else

sum(&state, x);

y = state;

}

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 8/17



Modular Extraction : example

void sum(int *p, int x)

{

*p += x;

}

M ′ = M[p 7→ M[p] + x ] (WP)

M ′ = M[&state 7→ M[&state] + x ] (Eva)

i ′state = istate + x with

{
istate = M[&state]

i ′state = M ′[&state]
(Projection)

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 9/17



Modular Extraction : example

void sum(int *p, int x)

{

*p += x;

}

M ′ = M[p 7→ M[p] + x ] (WP)

M ′ = M[&state 7→ M[&state] + x ] (Eva)

i ′state = istate + x with

{
istate = M[&state]

i ′state = M ′[&state]
(Projection)

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 9/17



Modular Extraction : example

void sum(int *p, int x)

{

*p += x;

}

M ′ = M[p 7→ M[p] + x ] (WP)

M ′ = M[&state 7→ M[&state] + x ] (Eva)

i ′state = istate + x with

{
istate = M[&state]

i ′state = M ′[&state]
(Projection)

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 9/17



Modular Extraction : Lustre generation

int x, y, reset, state;

void sum(int *p, int x)

{

*p += x;

}

/*@ input x, reset;

output y; */

void counter(void)

{

if (reset)

state = 0;

else

sum(&state, x);

y = state;

}

node sum_1(i_1, x_0: int) returns (i_2 : int)

let

i_2 = i_1 + x_0;

tel

node counter(x, reset : int) returns (y : int)

let

(* locals *)

var i_0 : int;

(* states *)

i_1 = 0 -> pre(i_0);

(* body *)

if reset <> 0 then

i_0 = 0;

else

i_0 = sum_1(i_1, x);

(* outputs *)

y = i_0;

tel

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 10/17



3. Verification Strategy



Verification Strategy: Lustre contracts with LustreSpec

node main(x:int) returns (y, z:int)

behavior B {

assumes x_pos { x >= 0 }

ensures y_pos { y >= x }

ensures y_inc { y >= (0 -> pre(y)) }

}

begin

if (x > 0) then {

y = x;

z = x;

} else {

y = 0 -> pre(y);

z = -x;

}

check z_pos { z >= 0 }

end

Highly inspired by ACSL, Very similar to CoCoSpec [3]
Modular Extraction of Lustre Models from C Code, L. Correnson et al. 11/17



Verification Strategy: Incremental Approach

■ Properties expressed as observer flows

■ Proof Engineering [4] approach for helping provers
■ Incremental steps instead of single untractable proof

▶ First prove property P0,
▶ then prove P1 assuming P0,
▶ then prove P2 assuming P0 ∧ P1

. . .

■ Some provers do not support this out of the box (GATeL)

■ We encode this strategy as part of the export from LustreSpec to Lustre
– (Annex section)

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 12/17



Verification Strategy: Incremental Approach

■ Properties expressed as observer flows

■ Proof Engineering [4] approach for helping provers
■ Incremental steps instead of single untractable proof

▶ First prove property P0,
▶ then prove P1 assuming P0,
▶ then prove P2 assuming P0 ∧ P1

. . .

■ Some provers do not support this out of the box (GATeL)

■ We encode this strategy as part of the export from LustreSpec to Lustre
– (Annex section)

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 12/17



GATeL - Constraint Based Verification

■ Generate test data given a model and an objective
– Backward propagation of reachability objective at final cycle

– Lustre/Scade flows: input/output clocked values over time

– Reals, floats, modulo, delta, interval unions, clocks, etc.

– Bounded by max number of cycles and numerical bounds

– Detect and prove some patterns of K-induction

■ Model compilation and simulation
– Static simplifications assuming asserts

– Statically detect linear growth and infer bounds wrt. cycle

– Forward evaluator, over-approximating evaluator

■ COLIBRI - SMT solver
– Colibri2 reimplementation in OCaml

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 13/17



GATeL - Constraint Based Verification

■ Generate test data given a model and an objective
– Backward propagation of reachability objective at final cycle

– Lustre/Scade flows: input/output clocked values over time

– Reals, floats, modulo, delta, interval unions, clocks, etc.

– Bounded by max number of cycles and numerical bounds

– Detect and prove some patterns of K-induction

■ Model compilation and simulation
– Static simplifications assuming asserts

– Statically detect linear growth and infer bounds wrt. cycle

– Forward evaluator, over-approximating evaluator

■ COLIBRI - SMT solver
– Colibri2 reimplementation in OCaml

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 13/17



GATeL - Constraint Based Verification

■ Generate test data given a model and an objective
– Backward propagation of reachability objective at final cycle

– Lustre/Scade flows: input/output clocked values over time

– Reals, floats, modulo, delta, interval unions, clocks, etc.

– Bounded by max number of cycles and numerical bounds

– Detect and prove some patterns of K-induction

■ Model compilation and simulation
– Static simplifications assuming asserts

– Statically detect linear growth and infer bounds wrt. cycle

– Forward evaluator, over-approximating evaluator

■ COLIBRI - SMT solver
– Colibri2 reimplementation in OCaml

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 13/17



4. Conclusion



Frama-C Synchrone

■ Frama-C plugin started in 2015 (today roughly 10K of code)
– Relies on Frama-C/EVA and Frama-C/WP for C extraction

– Second implementation that better scales

■ Transformations
– C Code extractor

– Lustre module Linker

– Contract inlining: express contracts as check assertions

– Proof observers: encode assertions for incremental proofs

– Export to Lustre: use clocks (for now)

■ Case study from ASNR
– Extraction from C code (approx. 50 functions)

– Linked with specification

– Export and proof with GATeL/Kind2

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 14/17



Frama-C Synchrone

■ Frama-C plugin started in 2015 (today roughly 10K of code)
– Relies on Frama-C/EVA and Frama-C/WP for C extraction

– Second implementation that better scales

■ Transformations
– C Code extractor

– Lustre module Linker

– Contract inlining: express contracts as check assertions

– Proof observers: encode assertions for incremental proofs

– Export to Lustre: use clocks (for now)

■ Case study from ASNR
– Extraction from C code (approx. 50 functions)

– Linked with specification

– Export and proof with GATeL/Kind2

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 14/17



Frama-C Synchrone

■ Frama-C plugin started in 2015 (today roughly 10K of code)
– Relies on Frama-C/EVA and Frama-C/WP for C extraction

– Second implementation that better scales

■ Transformations
– C Code extractor

– Lustre module Linker

– Contract inlining: express contracts as check assertions

– Proof observers: encode assertions for incremental proofs

– Export to Lustre: use clocks (for now)

■ Case study from ASNR
– Extraction from C code (approx. 50 functions)

– Linked with specification

– Export and proof with GATeL/Kind2

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 14/17



Related Work

■ In [2], CoCoSim provides an automated framework to translate Simulink
models to Lustre, for automated verification (Kind2 . . . )

▶ Use a subset of Simulink close to Lustre.

■ In [6], CoCompiler provides a DSL lifter for Lustre from C code based on a
rewriting of Velus using relational programming.

▶ C program should however be really close to the compiler’s image to be extracted.

■ In [5], PsyC (a synchronous variation of C) are translated to Lustre, for
automated verification (Kind2 . . . )

▶ Only the synchronous primitives and the control-flow is translated to Lustre.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 15/17



Related Work

■ In [2], CoCoSim provides an automated framework to translate Simulink
models to Lustre, for automated verification (Kind2 . . . )

▶ Use a subset of Simulink close to Lustre.

■ In [6], CoCompiler provides a DSL lifter for Lustre from C code based on a
rewriting of Velus using relational programming.

▶ C program should however be really close to the compiler’s image to be extracted.

■ In [5], PsyC (a synchronous variation of C) are translated to Lustre, for
automated verification (Kind2 . . . )

▶ Only the synchronous primitives and the control-flow is translated to Lustre.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 15/17



Related Work

■ In [2], CoCoSim provides an automated framework to translate Simulink
models to Lustre, for automated verification (Kind2 . . . )

▶ Use a subset of Simulink close to Lustre.

■ In [6], CoCompiler provides a DSL lifter for Lustre from C code based on a
rewriting of Velus using relational programming.

▶ C program should however be really close to the compiler’s image to be extracted.

■ In [5], PsyC (a synchronous variation of C) are translated to Lustre, for
automated verification (Kind2 . . . )

▶ Only the synchronous primitives and the control-flow is translated to Lustre.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 15/17



Conclusion and Future Work

Frama-C/Synchrone:

■ provides modular extraction of Lustre from synchronous-reactive C code.

■ has a dedicated specification language inspired by ACSL function contracts, called
LustreSpec.

■ has an incremental verification strategy inspired by Frama-C/WP using
external model-checker tools: GATeL and Kind2

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 16/17



Conclusion and Future Work

Future Work:

■ we plan to improve the modularity aspects of the verification process by reusing
sub-nodes contracts as for compositional verification

■ we plan to diversify the verification techniques:
▶ by extracting complex invariants resulting from abstract interpretation
▶ by implementing a dedicated Why3 theory for proofs that are close to classical

deductive verification.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 17/17



References I

[1] B Blanc et al. ‘Proving Properties of Reactive Programs From C to Lustre’. In:
ERTS 2018. 2018.

[2] Hamza Bourbouh et al. ‘CoCoSim, a code generation framework for
control/command applications: An overview of CoCoSim for multi-periodic
discrete Simulink models’. In: Embedded Real Time Systems (ERTS) 2020
ARC-E-DAA-TN74591 (2020).

[3] Adrien Champion et al. ‘CoCoSpec: a mode-aware contract language for reactive
systems’. In: International Conference on Software Engineering and Formal
Methods. Springer. 2016, pp. 347–366.

[4] Talia Ringer et al. ‘QED at Large: A Survey of Engineering of Formally Verified
Software’. In: CoRR abs/2003.06458 (2020). arXiv: 2003.06458. url:
https://arxiv.org/abs/2003.06458.

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 17/17

https://arxiv.org/abs/2003.06458
https://arxiv.org/abs/2003.06458


References II

[5] Fabien Siron. ‘Methodology for the formal verification of temporal properties for
real-time safety-critical applications based on logical time’. PhD thesis. Université
Côte d’Azur, 2023.

[6] Naomi Spargo et al. ‘The CoCompiler: DSL Lifting via Relational Compilation’.
In: arXiv preprint arXiv:2510.00210 (2025).

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 17/17



Verification Strategy: Encoding (1/2)

node main(x:int)

returns (y:int)

behavior B {

assumes x_pos {x >= 0}

ensures y_pos {y >= x}

ensures y_inc {y >= (0 -> pre(y))}

}

let

y = if (x > 0)

then x

else (0 -> pre(y));

tel

node __assume__ (goal: int; bi: bool; i: int) returns (p: bool)

let p = (not((i < goal)) or bi); tel

node __witness__ (goal: int; bi: bool; i: int) returns (p: bool)

let p = ((i = goal) and not(bi)); tel

node main (x: int; __goal: int) returns (y: int; __assumed: bool; __reached: bool)

var

__check_behavior_B_ensures_E1: bool;

__check_behavior_B_ensures_E0: bool;

__behavior_B: bool;

let

__behavior_B = (x >= 0);

y = if (x > 0) then x else (0 -> (pre y));

__check_behavior_B_ensures_E0 = (not(__behavior_B) or (y >= x));

__check_behavior_B_ensures_E1 = (not(__behavior_B) or (y >= (0 -> (pre y))));

__assumed = (__assume__(__goal, __check_behavior_B_ensures_E1, 2) and

__assume__(__goal, __check_behavior_B_ensures_E0, 1));

__reached = (__witness__(__goal, __check_behavior_B_ensures_E1, 2) or

__witness__(__goal, __check_behavior_B_ensures_E0, 1));

tel

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 18/17



Verification Strategy: Encoding (2/2)

node prove_main_1 (x: int) returns (y: int; __property: bool)

var

__witness: bool;

__ind: bool;

y0: int;

__ind_1: bool;

__witness_2: bool;

let

y0, __ind_1, __witness_2 = main(x, 1);

y = y0;

__ind = __ind_1;

__witness = __witness_2;

assert __ind;

__property = not(__witness);

tel

node prove_main_2 (x: int) returns (y: int; __property: bool)

var

__witness: bool;

__ind: bool;

y3: int;

__ind_4: bool;

__witness_5: bool;

let

y3, __ind_4, __witness_5 = main(x, 2);

y = y3;

__ind = __ind_4;

__witness = __witness_5;

assert __ind;

__property = not(__witness);

tel

Modular Extraction of Lustre Models from C Code, L. Correnson et al. 19/17



GATeL - successful proof



GATeL - counterexample


	Background
	Modular Extraction of Lustre programs
	Verification Strategy
	Conclusion

