Better but still WIP: scheduling for multi-threading with constraint
solvers

Timothy Bourke

Inria Paris
Ecole normale supérieure, PSL University

32nd Synchron Workshop — Aussois — 2025-11-25

static void stabilizerTask(void* param) {

]
stabilizerStep_t stabilizerStep = 1; 3 \
while(1) { ;«V %s‘

sensorsWaitDataReady(); // The sensor should unlock at 1kHz
X -
sensorsAcquire (&sensorData) ;

stateEstimator (&state, stabilizerStep); . .
E.g., Bitcraze Crazyflie 2.1+

controller(&control, &setpoint, &sensorData, &state, stabilizerStep);
controlMotors (&control) ;

if (... && RATE_DO_EXECUTE (usddeckFrequency(), stabilizerStep)) {
// #define RATE_DO_EXECUTE(RATE_HZ, TICK) ((TICK J (RATE_MAIN_LOOP / RATE_HZ)) == 0)
usddeckTriggerLogging() ;

}
¢ Periodic (FreeRTOS) task that executes step functions (“runnables”)
stabilizerStep++; . .,
) e “Step” functions write and read variables (“direct” comm. on “labels”)
}
} ® Functions run in order and terminate within a cycle

® Slower functions are conditionally executed in a specific phase 1/17

Airbus project “All-in-Lustre”

Current system

e A periodic task that sequences ~ 5000
individual (Lustre/Scade) functions
communicating over ~ 120000 variables

® Base period = 5ms.
Functions at 10ms, 20ms, 40ms, and 120ms.

® Choose phases using Integer Linear
Programming (ILP):

» load balancing

» respect upper bounds on bus access

® Manually assign phases for latency chains

2/17

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Airbus project “All-in-Lustre”

Current system Proposed System

e A periodic task that sequences ~ 5000 e Specify the whole system as a single Lustre
individual (Lustre/Scade) functions program with new features for specifying
communicating over ~ 120000 variables periods, resource constraints, and latency

e B iod = 5 constraints
ase perioa = oms.
p Forget, Boniol, Lesens, and Pagetti (2010):

Functions at 10ms, 20ms, 40ms, and 120ms. @ Like Prelude |A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

® Choose phases using Integer Linear but With_"o WCET, no deadlines,
Programming (ILP): no real-time tasks
» load balancing ® Rates expressed as 1/n of the base clock

» respect upper bounds on bus access o
e Our contribution:

® Manually assign phases for latency chains » Formalization of the approach
» ILP encoding for end-to-end latency

» WIiP: multi-task scheduling 2/17

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Source Language: Rate-Synchronous Lustre

ZOH /z
s1 | s3 |""H
So—) %H fi > > - f3 L h—>-54
m z m m
Fast-to-Slow Unit Delay Slow-to-Fast
Transition Transition

3/17

Source Language: Rate-Synchronous Lustre

ZOH S s S 1/Z
Soam—n%H i b= A = ! fi — mP%mHs4

Fast-to-Slow Unit Delay Slow-to-Fast
Transition Transition

s1 = £1(s0 when (0 % 3));

s2 = f2(s1);

s3 = f3(last s2);

s4 = current(s3, (2 % 3));

3/17

Source Language: Rate-Synchronous Lustre

sl =
s2 =
s3 =
s4 =

£f1(s0 when (0 % 3));
£2(s1);

f3(last s2);

current (s3, (2 % 3));

ZOH /z
a s1 | s3 [7H
So—) — f > > - f i A
m z m m
Fast-to-Slow Unit Delay Slow-to-Fast
Transition Transition
® —|vhen 0% 3)}F— --- @

current 2 %3)¥— --- @ @ @ O O

3/17

Source Language: Rate-Synchronous Lustre

ZOH s s s 1/2
Soam—n%H i b= A = ! fi — mP%mHs4
Fast-to-Slow Unit Delay Slow-to-Fast
Transition Transition
node main(s0 : int) returns (s4 : int)

var si int :: 1/3;
s2, s3 : int :: 1/3 last = 0;
let
s1 = f1(s0 when (0 % 3));
s2 = £f2(s1);
s3 = f3(last s2);
s4 = current(s3, (2 % 3));

latency_chain forward <= 4 (sl -> s2 -> s3);

tel

3/17

Source Language: Rate-Synchronous Lustre

ZOH s1 S) 53 1/2
=1 W g EN g EY gy B g EY -1 09
Fast-to-Slow Unit Delay Slow-to-Fast
Transition Transition
resource cpu : int node main(sO : int) returns (s4 : int)
var s1 : int :: 1/3;
node f1(x : int) s2, s3 : int :: 1/3 last = 0;
returns (y : int) let
requires (cpu = 5); sl = £1(sO0 when (0 % 3));

s2 = f2(s1);
node f2(x : int) s3 = f3(last s2);
returns (y : int) s4 = current(s3, (2 % 3));

requires (cpu = 2);
latency_chain forward <= 4 (sl -> s2 -> s3);
node £f3(x : int)
returns (y : int) tel
requires (cpu = 2);
3/17

Source Language: Rate-Synchronous Lustre

o s % X s 7
o 2 T e s
Fast-to-Slow Unit Delay Slow-to-Fast
Transition Transition
resource cpu : int node main(sO : int) returns (s4 : int)
var s1 : int :: 1/3;
node f1(x : int) s2, s3 : int :: 1/3 last = 0;
returns (y : int) let
requires (cpu = 5); sl = £1(sO0 when (0 % 3));
s2 = £f2(s1);
node f2(x : int) s3 = f3(last s2);
returns (y : int) s4 = current(s3, (2 % 3));
requires (cpu = 2);
latency_chain forward <= 4 (sl -> s2 -> s3);
node £3(x : int) resource balance cpu;
returns (y : int) tel
requires (cpu = 2);

3/17

The ROSACE Case Study

altitude command

altitude . alt h0|d vert.
> h_filter —| " — apesd
command
vert.,
elevator acc. o >
elevator deflection > aZ_fllter vz control L >
—_— _ elevator
deflection
pitch command
g — rate .
dynamics »| q_filter
vert.
speed f|
1 engine »| vz 1lter
SgimeE thrust =
true o throttle
airspeed . ; command
»|va filter >|va_control '—o—»
_ o>
airspeed command
~ [.
200 Hz 100 Hz 50Hz

4/17

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

The ROSACE Case Study

altitude command

altitude 0 alt hold vert.
»| h_filter —= " = aeed
command
vert.
| elevator acc. .
elevator deflection > aZ_fllter >\ o] L >
—_— > B elevator
deflection
pitch command
g — rate .
dynamics »| q_filter
vert.
speed f|
1 engine »| vz 1lter
SgimeE thrust =
true o throttle
airspeed . ; command
»|va filter >|va_control '—o—»
_ o>
airspeed command
~ [.
200 Hz 100 Hz 50Hz

4/17

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

Compilation: Model = Schedule = Code

h_f =

vz_c = alt_hold(current(h_c,
h_f when (7

h ¢

h hof
o——»| h_filter =

A
100 Hz = Y/a

h_filter(h when (? % 2));

7 % 5)),
% 2));

alt_hold F—=

-
50Hz = /s

Concomitance

5/17

Compilation: Model = Schedule = Code

h_f = h_filter(h when (7 % 2));

vz_c = alt_hold(current(h_c,
h_f when (7

h ¢

h hof
o——»| h_filter =

A
100 Hz = Y/a

ph filter= o 1 2y 3 o

7 % 5)),
% 2));

alt_hold F—=

-
50Hz = /s

p.alt _hold= ¢ 1 2 3 4

Concomitance

5/17

Compilation: Model = Schedule = Code / Concomitance

static int ¢_30 = 0;

h_f = h_filter(h when (7 % 2));
vz_c = alt_hold(current(h_c, (? % 5)), void step0()
h_f when (7 % 2)); {

if (¢_30% 2==0) {

e v e if (.30 % 4 ==2) {
.h_> hof alt_hold b filter(); // #4x

H ¥
—_— —1

100Hz = 1/a 50Hz =/ } else {
p.h_filter: 0 1 P 4 3 ‘o 1 2y 3 }

switch (c_30) {

case 2: va_control(); break;
case 6: alt_hold(); // *#*x
vz_control();

break;

p.alt _hold= o 1 2 3 4 5 6y 7

¥
c_30 =(c_30+1) % 8;

5/17

Compilation: Model = Schedule = Code / Concomitance

static int ¢_30 = 0;

h_f = h_filter(h when (7 % 2));
vz_c = alt_hold(current(h_c, (? % 5)), void step0()
h_f when (7 % 2)); {

if (¢_30% 2==0) {

M v e if (c.30% 4 ==2) {
.h_> hof alt_hold b £ilter(); // #4x

¥
D —— Hz =1

100Hz = 1/a 50Hz =/ } else {
p.h_filter: 0 1 P 4 3 ‘o 1 2y 3 }

switch (c_30) {

case 2: va_control(); break;
case 6: alt_hold(); // *#*x
vz_control();

break;

p.alt _hold= o 1 2 3 4 5 6y 7

® Source: dataflow semantics }
® Target: C code implicitly writing and reading static c_30 = (c_30 + 1) 7 8;

variables 5/17

Compilation: Model = Schedule = Code / Concomitance

static int ¢_30 = 0;

h_f = h_filter(h when (7 % 2));
vz_c = alt_hold(current(h_c, (? % 5)), void step0()
h_f when (7 % 2)); {

if (¢_30% 2==0) {

M v e if (c.30% 4 ==2) {
.h_> hof alt_hold b £ilter(); // #4x

}
D e Hz =1
100 Hz = 1/4 50Hz = /s } else {
f (concomitance)
p.h_filter: 0 1 P 4 3 ‘o 1 2y 3 }
switch (c_3p) {
case 2: va_fontrol(); break;

N
case 6: alt_hold(); // *#*x
vz_control();
break;

p.alt _hold= o 1 2 3 4 5 6y 7

® Source: dataflow semantics }
® Target: C code implicitly writing and reading static c_30 = (c_30 + 1) 7 8;

variables 5/17

Compilation: Model = Schedule = Code

h_f = h_filter(h when (7 % 2));

vz_c = alt_hold(current(h_c, (? % 5)),
h_f when (? % 2));

h ¢

*~—> v_z c
. & alt_hold

-
50Hz = /s

N
100Hz = Ya

p-h filter= o 1 2y 3 io 1 2y 3

p.alt _hold= o 1 2 3 4 5 6y 7

® Source: dataflow semantics
® Target: C code implicitly writing and reading static
variables

/ Concomitance

static int ¢_30 = 0;

void step0()

if (c_.30%2==0) {
if (c_30% 4 ==2) {
h_filter(); // **x

}
} else {

}

tch (c_30) {
: va_control(); break;
: alt_hold(); // **x
vz_control();
break;

c_30 =(c_30 + 1) % 8;

5/17

Compilation: Model = Schedule = Code

h_f = h_filter(h when (7 % 2));
vz_c = alt_hold(current(h_c, (? % 5)),
h_f when (? % 2));

h ¢

*~—> v .z c
h T alt_hold

-
50Hz = /s

N
100Hz = Ya

p-h filter= o 1 2y 3 io 1 2y 3

p.alt _hold= o 1 2 3 4 5 6y 7

® Source: dataflow semantics
® Target: C code implicitly writing and reading static
variables

/ Concomitance

static int ¢_30 = 0;

void step0()

{

switch (c_30) {
case 2: va_control(); break;
casegf: alt_hold(); // *#*
vz_control();
break;

if (¢_30% 2==0) {
if (c_30 % 4 ==2) {
h_filter(); //M&+

}
} else {

¥
c_30 =(c_30+1) % 8;

5/17

Compilation: Model = Schedule = Code

/ Concomitance

h_f = h_filter(h when (7 % 2));

vz_c = alt_hold(current(h_c, (? % 5)),
h_f when (? % 2));

h ¢

*~—> v_z c
. & alt_hold

-
50Hz = /s

N
100Hz = Ya

p-h filter= o 1 2y 3 io0 1 2y 3

N

p.alt _hold= o 1 2 3 4 5 6y 7

® Source: dataflow semantics
® Target: C code implicitly writing and reading static
variables

static int ¢_30 = 0;

void step0()

{

switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // **x
vz_q¢ontrol();
bregk;
} b (concomitance)
if (c_30 % 2==0) {
if (c_30 % 4==2) {
h_filter(); // *x+

}
} else {

}
c_30 = (c_30 +1) % 8;

5/17

Overview: compilation using external solvers

presseail

.ail

\
[4
cplex /
-~ N\‘,\

flowgraph —— .1p/.py .xml
~ K

6/17

Overview: compilation using external solvers

® Lustre-like source language
® Rates expressed as 1/n of the base clock

presseail

.ail .C

?
cplex /
S Sa
flowgraph —— .1p/.py .xml

-

~ -

cp-sat

6/17

Overview: compilation using external solvers

. . .
e Lustre-like source language One or more step functions

® Rates expressed as 1/n of the base clock * Called cyclically at the base rate

presseail

.ail > .C

\ cplex /
LT TN
flowgraph —— .1p/.py .xml

-

~ -

cp-sat

6/17

Overview: compilation using external solvers

. . .
e Lustre-like source language One or more step functions

® Rates expressed as 1/n of the base clock * Called cyclically at the base rate

presseail

.ail > .C

\ cplex /
LT TN
flowgraph —— .1p/.py .xml

-

~ -

) cp-sat
® \ertex = equation P

® Arc from producer to consumer

® |ndependent of source language

6/17

Overview: compilation using external solvers

. . .
e Lustre-like source language One or more step functions

® Rates expressed as 1/n of the base clock * Called cyclically at the base rate

presseail

.ail > .C

\ cplex /
LT TN
flowgraph —— .1p/.py .xml

-

~ -

) cp-sat
® \ertex = equation P

e Data dependencies
® Arc from producer to consumer

Resource bounds
® |ndependent of source language

Load balancing

End-to-end latency 6/17

Minimize
Subject to

Bounds
General
Binary

End

7/17

Minimize (va, az, q, vz, h) = dynamics(th, d_e);

Subject to az_f = az_filter(az when (? % 2));
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >=0

depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >=0

Bounds

0<=p.az_f <=3 ...
General

p.az_f p.dyn p.vz_c ...
Binary

End 7/17

Minimize

Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >=0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >=0

pw.defl.az_filter: O pw.0.az_f + 1 pw.l.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_ £ =0
pw.def0.az_filter: pw.0.az_f + pw.l.az_f+ pw.2.az_f+ pw.3.az_f=1

Bounds

0<=p.az_f <=3 ...
General

p.az_f p.dyn p.vz_c ...
Binary

pw.0.az_f pw.l.az_f pw.2.az_f pw.3.az_f ...
End 7/17

Minimize

Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >=0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >=0

pw.defl.az_filter: O pw.0.az_f + 1 pw.l.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f =0
pw.def0.az_filter: pw.0.az_f + pw.l.az_f+ pw.2.az_f+ pw.3.az_f=1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.O.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0O.az_f - 201 pw.0.alt_h =0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.l.eng
- 98 pw.l.ele - 1174 pw.l.dyn - 37 pw.3.az_f - 201 pw.7.alt_h =0 ...

Bo(;nisp az £ <= 3 node az_filter (az : float) returns (az_f : float)
General requires (ops = 37);

p.az_f p.dyn p.vz_c ... rsum.pw.7.0ps ... rsum.pw.0.ops
Binary

pw.0.az_f pw.l.az_f pw.2.az_f pw.3.az_f ...
End 7/17

Minimize rmax.cycle.ops

Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >=0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >=0

pw.defl.az_filter: O pw.0.az_f + 1 pw.l.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f =0
pw.def0.az_filter: pw.0.az_f + pw.l.az_f+ pw.2.az_f+ pw.3.az_f=1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.O.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0O.az_f - 201 pw.0.alt_h =0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.l.eng
- 98 pw.l.ele - 1174 pw.l.dyn - 37 pw.3.az_f - 201 pw.7.alt_h =0 ...

rbal.rsum.pw.0.ops_24: rmax.cycle.ops - rsum.pw.0.ops >=0 ...
rbal.rsum.pw.7.0ops_17: rmax.cycle.ops - rsum.pw.7.ops >= 0 ...

Bounds

0<=p.az_f <=3 ... resource balance ops;
General

p.-az_f p.dyn p.vz_c ... rsum.pw.7.0ps ... rsum.pw.0.ops rmax.cycle.ops ...
Binary

pw.0.az_f pw.l.az_f pw.2.az_f pw.3.az_f ...
End 7/17

Constraining End-to-

p.d= i) i o 1y
p.-h= 1 2y 3 1 2 3
p.a= 1 2 3 5 6 7
p.v= 1 2 3 5 6oy 7
p.e= 0 1: 1: 1: 0 il
Y Y Y Y
y=4 =6 y=8 y=2

nd Latency

8/17

Constraining End-to-end Latency

p.d= Jv o Jv iy o 1y 1y _io Jv 0 Jv 0 1y
p.-h= 1 2y 3 1 2 3 1 2y 3 0 1)
p.a= 1 2 3 5 6 7 1 2 3 4 5 6 7
p.v= 1 2 3 5 oy 7. 1 2 3 4 5 oy 7
p.e= 0 1: 1: 1: 0 il 1: 1 0 1: 0 1
Y Y Y Y Y Y Y
y=4 =6 y=8 y=2 y=4 Y=6 y=8 y=2

8/17

Constraining End-to-end Latency

p.d= o 1y o 1jr 0 Jv ‘o Jv
p.h= o 1 2y 3 0 1 2y 3
pa= o 1 2 3 a4 5 6 7
pv=o0 1 2 3 4 5 ey 7
pe= o0 | 1 o |1 o |
Y Y Y Y
T=4 T=6 y=38 y=2

(View online at https://www.tbrk.org/dataflow/showlatency)

9/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

N S S I
p.d=o iy o Iy o 1wy o 1y
: J2¢
h
p-h= o 1 2y 3 o 1 2y 3
x fat
a
p-a= o 1 2 3 4 5 6 7
W
D¢
v
p-v= o 1 2 3 4 5 6Y 7
— *4b
p.e= 0 1 0 1 0 1 0 1
Y Y Y Y e
y=4 =6 y=8 y=2

(View online at https://www.tbrk.org/dataflow/showlatency)

9/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
—_— —_— —_— —_—

l d 0<id<4
1

h 0<ih<2

p-h= o 1 2y 3 0 1 2y 3
x /2f
a 0<iaxl1
p-a= o 1 2 3 4 5 6 7
W
D¢
v 0<ivkl
P-v= o 1 2 3 4 5 6Y 7
*4b
p.e= 0 1: 0 1: o] 1: 0 1

e 0<ie<4

(View online at https://www.tbrk.org/dataflow/showlatency) 0/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
e s P
l l l d 0<id<4
p.d=o iy o Iy o 1wy o 1y e 0<laty, <2

2-i.d+p.d+latd1h:4~i.h—|—p.h
h 0<ih<?2

p-h= o 1 2y 3 0 1 2y 3
x /2f
a 0<iaxl1
p-a= o 1 2 3 4 5 6 7
W
D¢
v 0<ivkl
P-v= o 1 2 3 4 5 6Y 7
*4b
p.e= 0 1: 0 1: o] 1: 0 1
Y Y Y Y e O S i.e < 4
Y =4 =6 =8 =2

(View online at https://www.tbrk.org/dataflow/showlatency) 0/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
e s P
l l l d 0<id<4
p.d=o iy o Iy o 1wy o 1y e 0<laty, <2

2-i.d+p.d+latd1h:4~i.h—|—p.h
h 0<ih<?2

p-h= o 1 2y 3 0 1 2y 3 y 0<lat,,<4
X 2f 4.ih+ph+1lat,,=8-i.a+pa
a 0<iaxl1
p-a= o 1 2 3 4 5 6 7
W
D¢
v 0<ivkl
p-v= o 1 2 3 4 5 6y 7
p.e= 0 1o 1o 1T 0 1 *ab
\ 4 v Y \ e 0<ie<4
y=4 Y=6 y=8 y=2

(View online at https://www.tbrk.org/dataflow/showlatency) 0/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
ez e o ezt pdme o RaES
l l l d 0<id<4
p.d= o iy _:o Iy G o Iy _:o 1y 0<laty, <2
‘s
fae 2-i.d+pd+laty, =44ihHp.h
h 0<ih<?2 pmm——e x®
p.-h= o 1 2y 3 0 1 2y 3 O<~vlatha<4 -------- -
X f2¢ 4 '1 h"-l—p h+laty,,=8-i.a+p.a
a 0<ia<l1 -
p-a= o 1 2 3 4 5 6 7
Df
v 0<ivkl
p-v= o 1 2 3 4 5 oy 7
p.e= 0 1o 1o 1T 0 1 *ab

e 0<ie<4

(View online at https://www.tbrk.org/dataflow/showlatency) 0/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
ez e o ezt pdme o RaES
l l l d 0<id<4
p.d= o iy _:o Iy G o Iy _:o 1y 0<laty, <2
‘s
2 2. 1d—|—pd+latdh—4 '\-l—p.h
h 0<ih<2 oo __ x®
p.-h= o 1 2y 3 0 1 2y 3 O<~vlatha<4 -------- -
X f2¢ 4 '1 h"-l—p h+laty,,=8-i.a+p.a
a 0<ia<l1 -
p-a= o 1 2 3 4 5 6 7 " 0<lat,, <8
Df 8-ia+p.a+lat,, =8 -iv+pv
v 0<ivkl
p.v= o 1 2 3 4 5 oy 7
p.e= 0 1o 1o 1T 0 1 *ab

e 0<ie<4

(View online at https://www.tbrk.org/dataflow/showlatency) 0/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
ettt e
o d o o
p.d=o iy o iy o iy o 1y
Vet;
h
p-h= o 1 2y 3 0 1 2y 3
x fat
a
p-a= o 1 2 3 4 5 6 7
W
D¢
v
pv=_o 1 2 3 4 5 oy 7
= T T T *4b
p.e= 0 1. o 1. o 1. o 1
Y Y Y Y e
T—4 T—6 T—8 y=2

0<id<4
0<ih<?2
0<iaxl1
0<ivgl

|
|
|
|

0<ie<4

0 <latgn <2
2. 1d+Pd+latdh—4

~

'\-l—p.h
- A—
______ .

0 <~vlath a<4 TTmmT
4 '1 h'H—p h+laty,=8-i.a+p.a

0 <lat,, <8
8-ia+p.a+lat,, =8 -iv+pv

0<lat,.<8 wrap, , € {0,1}
8-iv+p.v+lat,.—8-wrap, .
=2-i.e+p.e

(View online at https://www.tbrk.org/dataflow/showlatency)

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
—_——
p.d=o v o Jv Jv 0 Jv 0 Jv 0 Jv 0 v o 1y
PN
e
4 ‘::.h'\-l—p h
K
. . ’
p-h= o 1 2y 3 1 2y 3 ‘o 1 2y 3 o 1 2y 3 -
X X 3-i.a+p.a
p-a= o 1 2 3 5 6 7 0 1 2 3 4 5 6 7
3-iv+pwv
€ {0,1
P-Vv= o 1 2 3 4 5 6Y 7 0 1 2 3 4 5 6y 7. »e {0,1}
p.e= 0 1 0 1 0 1 0 1 0 1 o 1 0 1 0 T 3-wrap, .
Y A Y v A A y -i.e+p.e
y=4 =6 y=8 y=2

(View online at https://www.tbrk.org/dataflow/showlatency)

9/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
ettt e
o d o o
p.d=o iy o iy o iy o 1y
Vet;
h
p-h= o 1 2y 3 0 1 2y 3
x fat
a
p-a= o 1 2 3 4 5 6 7
W
D¢
v
pv=_o 1 2 3 4 5 oy 7
= T T T *4b
p.e= 0 1. o 1. o 1. o 1
Y Y Y Y e
T—4 T—6 T—8 y=2

0<id<4
0<ih<?2
0<iaxl1
0<ivgl

|
|
|
|

0<ie<4

0 <latgn <2
2. 1d+Pd+latdh—4

~

'\-l—p.h
- A—
______ .

0 <~vlath a<4 TTmmT
4 '1 h'H—p h+laty,=8-i.a+p.a

0 <lat,, <8
8-ia+p.a+lat,, =8 -iv+pv

0<lat,.<8 wrap, , € {0,1}
8-iv+p.v+lat,.—8-wrap, .
=2-i.e+p.e

(View online at https://www.tbrk.org/dataflow/showlatency)

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

id=0 id=1 id=2 id=3
—_—
p.d=o iy o Jv Jv) 1Jr
p.h= o 1 2y 3 1 2y 3
p-a= o 1 2 3 5 6 7
p-v= o 1 2 3 4 5 6y 7
pe= 0 1 o 1 0 1 1
Y Y Y Y
y=4 =6 y=8 y=2

d

\%

(S

*4b

0<id<4
0<ih<?2
0<iaxl1
0<ivgl

|
|
|
|

0<ie<4

0 <latgn <2
2. 1d+Pd+latdh—4

~

'\-l—p.h
- A—
______ .

0 <~vlath a<4 TTmmT
4 '1 h'H—p h+laty,=8-i.a+p.a

0 <lat,, <8
8-ia+p.a+lat,, =8 -iv+pv

0<lat,.<8 wrap, , € {0,1}
8-iv+p.v+lat,.—8-wrap, .
=2-i.e+p.e

latgn + lath,a + lata,v + latv,e S 2

(View online at https://www.tbrk.org/dataflow/showlatency) 0/17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Chains of constraints

latency forward/backward < B (..., w,r,...)

10/17

Chains of constraints

latency forward/backward < B (..., w,r,...)

For each link w =5 r,

10/17

Chains of constraints

latency forward/backward < B (..., w,r,...)
For each link w =5 r,
0<ir< hp/period(r)

0<laty,<L forc=f where L = period(r) if forward
0<laty,,<L forc=b and L = period(w) if backward

if forward and s & {D", %,}

< <
0L wrap,, , > 1 or if backward and s ¢ {D", /,}

period(w) - i.w + p.w + lat, , — hp - wrap,, , = period(r) - i.r +p.r.

® Each intermediate instance is both a reader ® forward: attach chains from the top

and a writer, and thus constrained by two)
) ® backward: attach chains to the bottom
equations. 10/17

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation — phase

. . R Carle, Potop-Butucaru, Sorel, and Lesens (2015):
2. Compile to a sequential task (or parallelize each phase {me Dataflow Specification to Multiprocessor Par- }

titioned Time-Triggered Real-Time Implementation

11/17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

WiP: multi-task scheduling

Current Approach
1. Generate ILP: equation — phase

. . R Carle, Potop-Butucaru, Sorel, and Lesens (2015):
2. Compile to a sequential task (or parallelize each phase {From Dataflow Specification to Multiprocessor Par- }

titioned Time-Triggered Real-Time Implementation

Why not?. ..

1. Generate ILP: equation +— (thread, phase)

2. Compile to two (or more) sequential tasks

11/17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation — phase

. . R Carle, Potop-Butucaru, Sorel, and Lesens (2015):
2. Compile to a sequential task (or parallelize each phase {From Dataflow Specification to Multiprocessor Par- }

titioned Time-Triggered Real-Time Implementation

Why not?. ..

1. Generate ILP: equation +— (thread, phase)

2. Compile to two (or more) sequential tasks

...because. ..

® the number of constraints explodes and the
ILP solver may not be able to find a solution?

® delayed communications may accumulate

and increase end-to-end latency?
11/17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation — phase

. . R Carle, Potop-Butucaru, Sorel, and Lesens (2015):
2. Compile to a sequential task (or parallelize each phase {From Dataflow Specification to Multiprocessor Par- }

titioned Time-Triggered Real-Time Implementation

Why not?. Try anyway!
1. Generate ILP: equation — (thread, phase) e We've got a big hammer, why not use it?

2. Compile to two (or more) sequential tasks e Maybe it works for our applications

... because. .. The problem is interesting

® the number of constraints explodes and the
ILP solver may not be able to find a solution?

Still need to compare to list scheduling

® delayed communications may accumulate

and increase end-to-end latency?
11/17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

Threads and phases

Source program: w = e; r = f(w);
(tw # t;) A (pw = pr): extra synchronization required
thread 1 ‘ thread 2

if (c % 2==0){w=e¢; sem_post(wok); } | if (c % 2) == 0) { sem_wait(wok); r = f(w); }

12/17

Threads and phases

Source program: w = e; r = f(w);
(tw # t;) A (pw = pr): extra synchronization required
thread 1 ‘ thread 2

if (c % 2==0){w=e¢; sem_post(wok); } | if (c % 2) == 0) { sem_wait(wok); r = f(w); }

(pw # pr): no race condition due to global synchronization

thread 1 ‘ thread 2

if(c%2==‘”){w=e;} if(c%2)==”1'){r=f(w);}

12/17

Threads and phases

Source program: w = e; r = f(w);
(tw # t;) A (pw = pr): extra synchronization required
thread 1 ‘ thread 2

if (c % 2==0){w=e¢; sem_post(wok); } | if (c % 2) == 0) { sem_wait(wok); r = f(w); }

(pw # pr): no race condition due to global synchronization

thread 1 ‘ thread 2

if(c%2==”(')){w=e;} if(c%2)==”1'){r=f(w);}

require: t, = t, V py # pr same thread or different phase”

12/17

Preliminary Experiments on largest Airbus case-study

® QOct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

13/17

Preliminary Experiments on largest Airbus case-study

® QOct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

e Nov. 2024: It works a little bit
» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after =35 hours

13/17

Preliminary Experiments on largest Airbus case-study

e QOct. 2024: It does not work e Mar. 2025: “Boolean” encoding for

same-thread or different-phase

» cplex: runs for days until out-of-memory

>

e Nov. 2024: It works a little bit

>

>

>

set mip strategy file 3: runs for longer » cplex: 2 hours

until dying » cp-sat (with L. Sylvestre): 20 minutes

® Ongoing: Pure SAT encoding (with
L. Sylvestre)

Schedule on one thread and generate a MIP

! » Translate pseudo-boolean constraints following
start file

Eén and Sorensso (suggested by K. Claessen
Scheduling on two cores then starts from a and M. Sheeran)
valid solution, which the optimizer can

) ; ! » Re-encode end-to-end latency constraints
iteratively improve.

Solution after =35 hours

13/17

Minimize
Subject to

Bounds

0<=p.az_f <=3 ...
General

p.az_f ...
Binary

End 14 /17

Minimize
Subject to

tpw.defl.az_f: -1 p.az_f +1 tw.0.pw.l.az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_£f

+1tw.l.pw.l.az_f +2tw.l.pw.2.az_f + 3 tw.1l.pw.3.az_f =0

tpw.defO.az_f: +tw.0.pw.0.az_f + tw.O.pw.l.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f

+tw.l.pw.0.az_f + tw.1l.pw.1l.az_f + tw.1l.pw.2.az_f + tw.1l.pw.3.az_f =1 ...

Bounds
O<=p.az_f<=3 ...
General
p.az_f ...
Binary
tw.0.pw.0.az_f tw.0.pw.1l.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f

tw.l.pw.0.az_f tw.1l.pw.l.az_f tw.1l.pw.2.az_f tw.1l.pw.3.az_f ..

End 14 /17

Minimize
Subject to
tpw.defl.az_f: -1 p.az_f + 1 tw.0.pw.
+ 1 tw.1l.pw.

az_f +2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_£f
az_f + 2 tw.l.pw.2.az_f + 3 tw.l.pw.3.az_f =0

tpw.defO.az_f: tw.0.pw.0.az_f + tw.
+ tw.l.pw.0.az_f + tw.

.pw.l.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_£f
.pw.l.az_f + tw.1.pw.2.az_f + tw.1l.pw.3.az_f =1 ...

threads.tw.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1l.pw.0.az_f + tw.1l.pw.2.az_f <=1

threads.tw.l.pw.l.dyn.az_f: tw.1l.pw.1l.dyn + tw.0.pw.1l.az_f + tw.0.pw.3.az_f <=1

1
1
0
1
threads.tw.0.pw.1l.dyn.az_f: tw.0.pw.1l.dyn + tw.1l.pw.1l.az_f + tw.1.pw.3.az_f <=1
0
1
O.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <=1 ...

threads.tw.l.pw.0.dyn.az_£f: tw.1l.pw.

Bounds .
va, az, g, vz, h) = dynamics(th, d_e);
O<=p.az_f<=3 ... (d) y ()

General az_f = az_filter(az when (7 % 2));
p.az_f ...

Binary
tw.0.pw.0.az_f tw.0.pw.1l.az_f tw.0.pw.2.az_f tw.0.pw.3.az_£f

tw.l.pw.0.az_f tw.l.pw.l.az_f tw.1l.pw.2.az_f tw.1.pw.3.az_f ...
End 14 /17

Minimize
Subject to
tpw.defl.az_f: -1 p.az_f + 1 tw.0.pw
+ 1 tw.l.pw

tpw.defO.az_f: tw.0.pw.0.az_f + tw
+ tw.l.pw.0.az_f + tw

threads.tw.0.pw.0.dyn.az_f: tw.0.pw

threads.tw.l.pw.l.dyn.az_f: tw.1l.pw

az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_£f
az_f + 2 tw.l.pw.2.az_f + 3 tw.1l.pw.3.az_f =0

pw.l.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
pw.l.az_f + tw.l.pw.2.az_f + tw.1.pw.3.az_f =1 ...

dyn + tw.1.pw.0.az_f + tw.1l.pw.2.az_f <=1
dyn + tw.0.pw.1l.az_f + tw.0.pw.3.az_f <=1

1.
1.
.0.
1.
threads.tw.0.pw.1l.dyn.az_f: tw.0.pw.1l.dyn + tw.1l.pw.1l.az_f + tw.1.pw.3.az_f <=1
.0.
1.
.0.

threads.tw.l.pw.0.dyn.az_£f: tw.1l.pw

rsum.tw.l.pw.7.ops: rsum.tw.1l.pw.7.0ops - 37 tw.1l.pw.3.vz_f
- 38 tw.l.pw.3.va_f - 90 tw.1l.pw.7.va_c
- 38 tw.1l.pw.3.h_f - 82 tw.l.pw.l.eng

Bounds
0<=p.azf<=3... node az_filter (az :
General requires (ops = 37);
p.az_f ... rsum.tw.0.pw.0.0ops ... rsum.tw.1l.pw.7.0ps
Binary

tw.0.pw.0.az_f tw.0.pw.1l.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f

dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <=1 ...

- 88 tw.1.pw.7.vz_c
- 37 tw.1.pw.3.q_f
- 98 tw.1.pw.1l.ele

- 1174 tw.1.pw.1.dyn - 37 tw.1l.pw.3.az_f - 201 tw.1.pw.7.alt_h =0 ...

float) returns (az_f : float)

tw.l.pw.0.az_f tw.l.pw.l.az_f tw.1l.pw.2.az_f tw.1.pw.3.az_f ...

End

14/17

Minimize rmax.threadandcycle.ops
Subject to

tpw.defl.az_f: -1 p.az_f + 1 tw.0.pw

tpw.defO.az_f: tw.0.pw.0.az_f + tw

threads.
threads.

threads.
threads.

rsum.tw.

Bounds

tw
tw

tw
tw

az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_£f

+1tw.l.pw.l.az_f +2tw.l.pw.2.az_f + 3 tw.1l.pw.3.az_f =0

pw.l.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
+ tw.l.pw.0.az_f + tw

.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1.pw.0.az_f + tw.1l.pw.2.az_£f <=1

.l.pw.l.dyn.az_f: tw.1l.pw
.1l.pw.0.dyn.az_£f: tw.1l.pw

dyn + tw.0.pw.1l.az_f + tw.0.pw.3.az_f <=1

1.
1.
.0.
1.
.0.pw.l.dyn.az_f: tw.0.pw.1.dyn + tw.1.pw.1l.az_f + tw.1l.pw.3.az_f <=1
.0.
1.
.0.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <=1 ...

1.pw.7.0ps: rsum.tw.1l.pw.7.0ps - 37 tw.1l.pw.3.vz_f - 88 tw.1l.pw.7.vz_c

- 38 tw.l.pw.3.va_f - 90 tw.1l.pw.7.va_c - 37 tw.1.pw.3.q_f
- 38 tw.l.pw.3.h_f -82tw.l.pw.l.eng - 98 tw.l.pw.1l.ele

pw.l.az_f + tw.l.pw.2.az_f + tw.1.pw.3.az_f =1 ...

- 1174 tw.1.pw.1.dyn - 37 tw.1.pw.3.az_f - 201 tw.1.pw.7.alt_h =0 ...

O<=p.az_f<=3 ...

General

p.az_f ...

Binary

rsum.tw.0.pw.0.0ops ... rsum.tw.l.pw.7.0ps rmax.threadandcycle.ops ...

tw.0.pw.0.az_f tw.0.pw.1l.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f
tw.l.pw.0.az_f tw.1l.pw.1l.az_f tw.1l.pw.2.az_f tw.1l.pw.3.az_f ..

End

14/17

Preliminary Results on the ~5000 function example

® cplex runs for days until an out-of-memory error

15/17

Preliminary Results on the ~5000 function example

® cplex runs for days until an out-of-memory error
» Schedule with -nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with -nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over =1 hour.

15/17

Preliminary Results on the ~5000 function example

® cplex runs for days until an out-of-memory error
» Schedule with -nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with -nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over =1 hour.

e With L. Sylvestre, we added new back-ends
» cp-sat, translate .Ip: =15 minutes (3 threads: ~8 hours)
» cp-sat, all booleans: ~25 minutes
» Z3 (single core): fails (so far)

» minisat+to expand the pseudo-boolean constraints: fails (so far)

15/17

Preliminary Results on the ~5000 function example

® cplex runs for days until an out-of-memory error
» Schedule with -nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with -nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over =1 hour.

e With L. Sylvestre, we added new back-ends
» cp-sat, translate .Ip: =15 minutes (3 threads: ~8 hours)

» cp-sat, all booleans: ~25 minutes

v

> Z3 (single core): fails (so far)

» minisat+to expand the pseudo-boolean constraints: fails (so far)

® What about --nthreads 47 Or a bigger application?

® More tricks needed (schedule for 2, then reschedule for 4, etc.) or completely doomed?

15/17

Same thread or different phase: what about fast functions?

® For functions at rate 1/n when 1 < n, the t, = t, V py, # p, rule works well enough

e But what about for n =17

16 /17

Same thread or different phase: what about fast functions?

® For functions at rate 1/n when 1 < n, the t, = t, V py, # p, rule works well enough

e But what about for n =17

¢ Simple solution: multiply all rates by 2, giving 1/2n
» Each cycle, every thread executes: step(); barrier(); step()

» Breaks the --fast-first rule (faster functions before slower ones)

16 /17

Same thread or different phase: what about fast functions?

® For functions at rate 1/n when 1 < n, the t, = t, V py, # p, rule works well enough

e But what about for n =17

¢ Simple solution: multiply all rates by 2, giving 1/2n
» Each cycle, every thread executes: step(); barrier(); step()

» Breaks the --fast-first rule (faster functions before slower ones)

® Another solution: add the barrier within step ()
» Schedule n = 1 functions ante-barrier or post-barrier
» New rule: t, = t, V (if n > 1 then p, # p, else b, # b,)
» Even more variables and constraints

» Need to balance resources used in ante-barrier and in the whole cycle

16 /17

Ongoing work

e Still refining the SAT backend

» boolean encoding of end-to-end latency

» treatment of pseudo-boolean constraints for resource balancing

e Difference between WCET used for balancing and WCET of generated code
® Need robust measures for case-studies and more benchmarks

e Use a real-time scheduling algorithm to find a solution or an initial solution?

17/17

References |

e Carle, T., D. Potop-Butucaru, Y. Sorel, and D. Lesens (Nov. 2015). “From Dataflow Specification to
Multiprocessor Partitioned Time-Triggered Real-Time Implementation”. In: Leibniz Trans. Embedded
Systems (LITES) 2.2, 01:1-01:30.

e Forget, J., F. Boniol, D. Lesens, and C. Pagetti (Mar. 2010). “A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems”. In: Proc. 25th ACM Symp. Applied Computing (SAC'10).
Ed. by S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung. Sierre, Switzerland: ACM,
pp. 527-534.

e Pagetti, C., D. Saussié, R. Gratia, E. Noulard, and P. Siron (Apr. 2014). “The ROSACE Case Study: From
Simulink Specification to Multi/Many-Core Execution”. In: 20th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2014). |EEE. Berlin, Germany, pp. 309-318.

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

Tricks that do not seem to help: 1/2

Minimize Races
® Rather than prohibit different-thread/same-phase communications, try to minimize them.

For each writer-reader: add a binary variable sync.dyn.az_f

Include it in the previous constraints:

tw.l.pw.1l.dyn + tw.0O.pw.1l.az_f + tw.0.pw.3.az_f - sync.dyn.az_f <=1

Add an additional objective to minimize the sum of such variables

Tricks that do not seem to help: 1/2

Minimize Races
® Rather than prohibit different-thread/same-phase communications, try to minimize them.

® For each writer-reader: add a binary variable sync.dyn.az_f

® Include it in the previous constraints:

tw.l.pw.1l.dyn + tw.0O.pw.1l.az_f + tw.0.pw.3.az_f - sync.dyn.az_f <=1

e Add an additional objective to minimize the sum of such variables

® Results: load balances quite quickly (objective 1),
then very, very slowly converges on eliminating races (objective 2).

® Requires adding synchronizations within a phase.

Tricks that do not seem to help: 2/2

Clustering prior to ILP
e Many partitions: does not seem very effective

e Few partitions: precludes finding a valid schedule

» E.g., with four partitions, we can rapidly test all combinations for feasability: 1100, 0110, 1010

Tricks that do not seem to help: 2/2

Clustering prior to ILP
e Many partitions: does not seem very effective
e Few partitions: precludes finding a valid schedule

» E.g., with four partitions, we can rapidly test all combinations for feasability: 1100, 0110, 1010

® Try tweaking the heuristic?
e (Cluster in a different way?

e Try cplex conflict analysis features?

	Title slide
	Language and Approach
	Airbus project ``All-in-Lustre''
	Source Language: Rate-Synchronous Lustre
	The ROSACE Case Study
	Compilation: Model Schedule Code / Concomitance
	Overview: compilation using external solvers

	End-to-End Latency
	Constraining End-to-end Latency
	Constraining End-to-end Latency
	Chains of constraints

	Multi-task Scheduling
	WiP: multi-task scheduling
	Threads and phases
	Preliminary Experiments on largest Airbus case-study
	Preliminary Results on the 5000 function example
	Same thread or different phase: what about fast functions?
	Ongoing work

	Appendix
	References
	Tricks that do not seem to help: 1/2
	Tricks that do not seem to help: 2/2

