
Better but still WIP: scheduling for multi-threading with constraint
solvers

Timothy Bourke

Inria Paris
École normale supérieure, PSL University

32nd Synchron Workshop – Aussois – 2025-11-25

E.g., Bitcraze Crazyflie 2.1+

• Periodic (FreeRTOS) task that executes step functions (“runnables”)

• “Step” functions write and read variables (“direct” comm. on “labels”)

• Functions run in order and terminate within a cycle

• Slower functions are conditionally executed in a specific phase

static void stabilizerTask(void* param) {
stabilizerStep_t stabilizerStep = 1;
...
while(1) {
sensorsWaitDataReady(); // The sensor should unlock at 1kHz
sensorsAcquire(&sensorData);
...
stateEstimator(&state, stabilizerStep);
...
controller(&control, &setpoint, &sensorData, &state, stabilizerStep);
controlMotors(&control);

if (... && RATE_DO_EXECUTE(usddeckFrequency(), stabilizerStep)) {
// #define RATE_DO_EXECUTE(RATE_HZ, TICK) ((TICK % (RATE_MAIN_LOOP / RATE_HZ)) == 0)
usddeckTriggerLogging();

}
...
stabilizerStep++;
...

}
}

1 / 17

Airbus project “All-in-Lustre”

Current system
• A periodic task that sequences ≈ 5 000

individual (Lustre/Scade) functions
communicating over ≈ 120 000 variables

• Base period = 5ms.
Functions at 10ms, 20ms, 40ms, and 120ms.

• Choose phases using Integer Linear
Programming (ILP):

» load balancing

» respect upper bounds on bus access

• Manually assign phases for latency chains

Proposed System
• Specify the whole system as a single Lustre

program with new features for specifying
periods, resource constraints, and latency
constraints

• Like Prelude
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
but with no WCET, no deadlines,
no real-time tasks

• Rates expressed as 1/n of the base clock

• Our contribution:

» Formalization of the approach

» ILP encoding for end-to-end latency

» WiP: multi-task scheduling

2 / 17

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Airbus project “All-in-Lustre”

Current system
• A periodic task that sequences ≈ 5 000

individual (Lustre/Scade) functions
communicating over ≈ 120 000 variables

• Base period = 5ms.
Functions at 10ms, 20ms, 40ms, and 120ms.

• Choose phases using Integer Linear
Programming (ILP):

» load balancing

» respect upper bounds on bus access

• Manually assign phases for latency chains

Proposed System
• Specify the whole system as a single Lustre

program with new features for specifying
periods, resource constraints, and latency
constraints

• Like Prelude
[

Forget, Boniol, Lesens, and Pagetti (2010):
A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems

]
but with no WCET, no deadlines,
no real-time tasks

• Rates expressed as 1/n of the base clock

• Our contribution:

» Formalization of the approach

» ILP encoding for end-to-end latency

» WiP: multi-task scheduling 2 / 17

http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196

Source Language: Rate-Synchronous Lustre
ZOH

Fast-to-Slow
Transition

1
z

Unit Delay

f1s0 f2
s1

f3
s2

1/z

Slow-to-Fast
Transition

s3
s4

3 / 17

Source Language: Rate-Synchronous Lustre
ZOH

Fast-to-Slow
Transition

1
z

Unit Delay

f1s0 f2
s1

f3
s2

1/z

Slow-to-Fast
Transition

s3
s4

s1 = f1(s0 when (0 % 3));
s2 = f2(s1);
s3 = f3(last s2);
s4 = current(s3 , (2 % 3));

3 / 17

Source Language: Rate-Synchronous Lustre
ZOH

Fast-to-Slow
Transition

1
z

Unit Delay

f1s0 f2
s1

f3
s2

1/z

Slow-to-Fast
Transition

s3
s4

· · · when (0 % 3) · · ·

· · · current (2 % 3) · · ·

s1 = f1(s0 when (0 % 3));
s2 = f2(s1);
s3 = f3(last s2);
s4 = current(s3 , (2 % 3));

3 / 17

Source Language: Rate-Synchronous Lustre
ZOH

Fast-to-Slow
Transition

1
z

Unit Delay

f1s0 f2
s1

f3
s2

1/z

Slow-to-Fast
Transition

s3
s4

node main(s0 : int) returns (s4 : int)
var s1 : int :: 1/3;

s2 , s3 : int :: 1/3 last = 0;
let

s1 = f1(s0 when (0 % 3));
s2 = f2(s1);
s3 = f3(last s2);
s4 = current(s3 , (2 % 3));

latency_chain forward <= 4 (s1 -> s2 -> s3);

tel

3 / 17

Source Language: Rate-Synchronous Lustre
ZOH

Fast-to-Slow
Transition

1
z

Unit Delay

f1s0 f2
s1

f3
s2

1/z

Slow-to-Fast
Transition

s3
s4

resource cpu : int

node f1(x : int)
returns (y : int)
requires (cpu = 5);

node f2(x : int)
returns (y : int)
requires (cpu = 2);

node f3(x : int)
returns (y : int)
requires (cpu = 2);

node main(s0 : int) returns (s4 : int)
var s1 : int :: 1/3;

s2 , s3 : int :: 1/3 last = 0;
let

s1 = f1(s0 when (0 % 3));
s2 = f2(s1);
s3 = f3(last s2);
s4 = current(s3 , (2 % 3));

latency_chain forward <= 4 (s1 -> s2 -> s3);

tel

3 / 17

Source Language: Rate-Synchronous Lustre
ZOH

Fast-to-Slow
Transition

1
z

Unit Delay

f1s0 f2
s1

f3
s2

1/z

Slow-to-Fast
Transition

s3
s4

resource cpu : int

node f1(x : int)
returns (y : int)
requires (cpu = 5);

node f2(x : int)
returns (y : int)
requires (cpu = 2);

node f3(x : int)
returns (y : int)
requires (cpu = 2);

node main(s0 : int) returns (s4 : int)
var s1 : int :: 1/3;

s2 , s3 : int :: 1/3 last = 0;
let

s1 = f1(s0 when (0 % 3));
s2 = f2(s1);
s3 = f3(last s2);
s4 = current(s3 , (2 % 3));

latency_chain forward <= 4 (s1 -> s2 -> s3);
resource balance cpu;

tel

3 / 17

The ROSACE Case Study [Pagetti, Saussié, Gratia, Noulard, and Siron (2014): The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution]

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

elevator
deflection

engine
thrust

altitude

vert.
acc.

pitch
rate

vert.
speed

true
airspeed

altitude command

vert.
speed
command

airspeed command

elevator
deflection
command

throttle
command

200Hz 100Hz 50Hz 4 / 17

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

The ROSACE Case Study [Pagetti, Saussié, Gratia, Noulard, and Siron (2014): The ROSACE Case
Study: From Simulink Specification to Multi/Many-Core Execution]

elevator

engine

dynamics q_filter

az_filter

h_filter

vz_filter

va_filter

alt_hold

vz_control

va_control

elevator
deflection

engine
thrust

altitude

vert.
acc.

pitch
rate

vert.
speed

true
airspeed

altitude command

vert.
speed
command

airspeed command

elevator
deflection
command

throttle
command

200Hz 100Hz 50Hz 4 / 17

http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter(); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // ***

vz_control();
break;

}
c_30 = (c_30 + 1) % 8;

}
5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading static

variables

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter(); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // ***

vz_control();
break;

}
c_30 = (c_30 + 1) % 8;

}
5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading static

variables

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter(); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // ***

vz_control();
break;

}
c_30 = (c_30 + 1) % 8;

}

f (concomitance)

5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading static

variables

static int c_30 = 0;

void step0()
{

if (c_30 % 2 == 0) {
if (c_30 % 4 == 2) {

h_filter(); // ***
...

}
} else {

...
}
switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // ***

vz_control();
break;

}
c_30 = (c_30 + 1) % 8;

}
5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading static

variables

static int c_30 = 0;

void step0()
{

switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // ***

vz_control();
break;

}
if (c_30 % 2 == 0) {

if (c_30 % 4 == 2) {
h_filter(); // ***
...

}
} else {

...
}
c_30 = (c_30 + 1) % 8;

}
5 / 17

Compilation: Model ⇒ Schedule ⇒ Code / Concomitance

h_f = h_filter(h when (? % 2));
vz_c = alt_hold(current(h_c , (? % 5)),

h_f when (? % 2));

h_filter alt_holdh_f

h_c

h
v_z_c

100Hz = 1/4
50Hz = 1/8

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

p.h_filter=

p.alt_hold=

• Source: dataflow semantics
• Target: C code implicitly writing and reading static

variables

static int c_30 = 0;

void step0()
{

switch (c_30) {
case 2: va_control(); break;
case 6: alt_hold(); // ***

vz_control();
break;

}
if (c_30 % 2 == 0) {

if (c_30 % 4 == 2) {
h_filter(); // ***
...

}
} else {

...
}
c_30 = (c_30 + 1) % 8;

}

b (concomitance)

5 / 17

Overview: compilation using external solvers

.ail

flowgraph .lp/.py .xml

.c
presseail

cplex

cp-sat

6 / 17

Overview: compilation using external solvers

.ail

flowgraph .lp/.py .xml

.c
presseail

cplex

cp-sat

• Lustre-like source language

• Rates expressed as 1/n of the base clock

6 / 17

Overview: compilation using external solvers

.ail

flowgraph .lp/.py .xml

.c
presseail

cplex

cp-sat

• Lustre-like source language

• Rates expressed as 1/n of the base clock

• One or more step functions

• Called cyclically at the base rate

6 / 17

Overview: compilation using external solvers

.ail

flowgraph .lp/.py .xml

.c
presseail

cplex

cp-sat

• Lustre-like source language

• Rates expressed as 1/n of the base clock

• One or more step functions

• Called cyclically at the base rate

• Vertex = equation

• Arc from producer to consumer

• Independent of source language

6 / 17

Overview: compilation using external solvers

.ail

flowgraph .lp/.py .xml

.c
presseail

cplex

cp-sat

• Lustre-like source language

• Rates expressed as 1/n of the base clock

• One or more step functions

• Called cyclically at the base rate

• Vertex = equation

• Arc from producer to consumer

• Independent of source language

• Data dependencies

• Resource bounds

• Load balancing

• End-to-end latency
6 / 17

Minimize rmax.cycle.ops
Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >= 0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >= 0

pw.def1.az_filter: 0 pw.0.az_f + 1 pw.1.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f = 0
pw.def0.az_filter: pw.0.az_f + pw.1.az_f + pw.2.az_f + pw.3.az_f = 1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.0.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0.az_f - 201 pw.0.alt_h = 0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.1.eng
- 98 pw.1.ele - 1174 pw.1.dyn - 37 pw.3.az_f - 201 pw.7.alt_h = 0 ...

rbal.rsum.pw.0.ops_24: rmax.cycle.ops - rsum.pw.0.ops >= 0 ...
rbal.rsum.pw.7.ops_17: rmax.cycle.ops - rsum.pw.7.ops >= 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f p.dyn p.vz_c ... rsum.pw.7.ops ... rsum.pw.0.ops rmax.cycle.ops ...

Binary
pw.0.az_f pw.1.az_f pw.2.az_f pw.3.az_f ...

End 7 / 17

Minimize rmax.cycle.ops
Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >= 0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >= 0

pw.def1.az_filter: 0 pw.0.az_f + 1 pw.1.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f = 0
pw.def0.az_filter: pw.0.az_f + pw.1.az_f + pw.2.az_f + pw.3.az_f = 1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.0.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0.az_f - 201 pw.0.alt_h = 0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.1.eng
- 98 pw.1.ele - 1174 pw.1.dyn - 37 pw.3.az_f - 201 pw.7.alt_h = 0 ...

rbal.rsum.pw.0.ops_24: rmax.cycle.ops - rsum.pw.0.ops >= 0 ...
rbal.rsum.pw.7.ops_17: rmax.cycle.ops - rsum.pw.7.ops >= 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f p.dyn p.vz_c ... rsum.pw.7.ops ... rsum.pw.0.ops rmax.cycle.ops ...

Binary
pw.0.az_f pw.1.az_f pw.2.az_f pw.3.az_f ...

End

(va, az, q, vz, h) = dynamics(th, d_e);
az_f = az_filter(az when (? % 2));

7 / 17

Minimize rmax.cycle.ops
Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >= 0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >= 0

pw.def1.az_filter: 0 pw.0.az_f + 1 pw.1.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f = 0
pw.def0.az_filter: pw.0.az_f + pw.1.az_f + pw.2.az_f + pw.3.az_f = 1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.0.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0.az_f - 201 pw.0.alt_h = 0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.1.eng
- 98 pw.1.ele - 1174 pw.1.dyn - 37 pw.3.az_f - 201 pw.7.alt_h = 0 ...

rbal.rsum.pw.0.ops_24: rmax.cycle.ops - rsum.pw.0.ops >= 0 ...
rbal.rsum.pw.7.ops_17: rmax.cycle.ops - rsum.pw.7.ops >= 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f p.dyn p.vz_c ... rsum.pw.7.ops ... rsum.pw.0.ops rmax.cycle.ops ...

Binary
pw.0.az_f pw.1.az_f pw.2.az_f pw.3.az_f ...

End 7 / 17

Minimize rmax.cycle.ops
Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >= 0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >= 0

pw.def1.az_filter: 0 pw.0.az_f + 1 pw.1.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f = 0
pw.def0.az_filter: pw.0.az_f + pw.1.az_f + pw.2.az_f + pw.3.az_f = 1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.0.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0.az_f - 201 pw.0.alt_h = 0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.1.eng
- 98 pw.1.ele - 1174 pw.1.dyn - 37 pw.3.az_f - 201 pw.7.alt_h = 0 ...

rbal.rsum.pw.0.ops_24: rmax.cycle.ops - rsum.pw.0.ops >= 0 ...
rbal.rsum.pw.7.ops_17: rmax.cycle.ops - rsum.pw.7.ops >= 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f p.dyn p.vz_c ... rsum.pw.7.ops ... rsum.pw.0.ops rmax.cycle.ops ...

Binary
pw.0.az_f pw.1.az_f pw.2.az_f pw.3.az_f ...

End

node az_filter (az : float) returns (az_f : float)
requires (ops = 37);

7 / 17

Minimize rmax.cycle.ops
Subject to
depw.wr.dynamics.az_filter_2: p.az_f - p.dyn >= 0
depw.wr.az_filter.vz_control_1: p.vz_c - p.az_f >= 0

pw.def1.az_filter: 0 pw.0.az_f + 1 pw.1.az_f + 2 pw.2.az_f + 3 pw.3.az_f -1 p.az_f = 0
pw.def0.az_filter: pw.0.az_f + pw.1.az_f + pw.2.az_f + pw.3.az_f = 1

rsum.pw.0.ops: rsum.pw.0.ops - 37 pw.0.vz_f - 88 pw.0.vz_c - 38 pw.0.va_f
- 90 pw.0.va_c - 37 pw.0.q_f - 38 pw.0.h_f - 82 pw.0.eng
- 98 pw.0.ele - 1174 pw.0.dyn - 37 pw.0.az_f - 201 pw.0.alt_h = 0 ...

rsum.pw.7.ops: rsum.pw.7.ops - 37 pw.3.vz_f - 88 pw.7.vz_c - 38 pw.3.va_f
- 90 pw.7.va_c - 37 pw.3.q_f - 38 pw.3.h_f - 82 pw.1.eng
- 98 pw.1.ele - 1174 pw.1.dyn - 37 pw.3.az_f - 201 pw.7.alt_h = 0 ...

rbal.rsum.pw.0.ops_24: rmax.cycle.ops - rsum.pw.0.ops >= 0 ...
rbal.rsum.pw.7.ops_17: rmax.cycle.ops - rsum.pw.7.ops >= 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f p.dyn p.vz_c ... rsum.pw.7.ops ... rsum.pw.0.ops rmax.cycle.ops ...

Binary
pw.0.az_f pw.1.az_f pw.2.az_f pw.3.az_f ...

End

resource balance ops;

7 / 17

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

8 / 17

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

8 / 17

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

0 ≤ lata,v < 8
8 · i.a+ p.a+ lata,v = 8 · i.v + p.v

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

0 ≤ lata,v < 8
8 · i.a+ p.a+ lata,v = 8 · i.v + p.v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i.v + p.v + latv,e − 8 · wrapv,e

= 2 · i.e + p.e

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

0 ≤ lata,v < 8
8 · i.a+ p.a+ lata,v = 8 · i.v + p.v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i.v + p.v + latv,e − 8 · wrapv,e

= 2 · i.e + p.e

(View online at https://www.tbrk.org/dataflow/showlatency)

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

$

9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

0 ≤ lata,v < 8
8 · i.a+ p.a+ lata,v = 8 · i.v + p.v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i.v + p.v + latv,e − 8 · wrapv,e

= 2 · i.e + p.e

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Constraining End-to-end Latency

0 1 0 1 0 1 0 1

0 1 2 3 0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

p.d=

p.h=

p.a=

p.v=
p.e=

$

Σ = 4 Σ = 6 Σ = 8 Σ = 2

d

h

a

v

e

/2 f

/2 f

Dw
f

∗4 b

i.d = 0 i.d = 1 i.d = 2 i.d = 3

0 ≤ i.d < 4

0 ≤ i.h < 2

0 ≤ i.a < 1

0 ≤ i.v < 1

0 ≤ i.e < 4

0 ≤ latd,h < 2
2 · i.d + p.d + latd,h = 4 · i.h + p.h

0 ≤ lath,a < 4
4 · i.h + p.h + lath,a = 8 · i.a+ p.a

0 ≤ lata,v < 8
8 · i.a+ p.a+ lata,v = 8 · i.v + p.v

0 < latv,e ≤ 8 wrapv,e ∈ {0, 1}
8 · i.v + p.v + latv,e − 8 · wrapv,e

= 2 · i.e + p.e

latd,h + lath,a + lata,v + latv,e ≤ 2

(View online at https://www.tbrk.org/dataflow/showlatency) 9 / 17

https://www.tbrk.org/dataflow/showlatency/?chain=chain%20rosace%0Adynamics%20::%201%20%2F%202%20@%201;%0Ah_filter%20=%20dynamics%20when%20(%3F%20%25%202)%20@%202;%0Aalt_hold%20=%20h_filter%20when%20(%3F%20%25%202)%20@%206;%0Avz_control%20=%20alt_hold%20@%206;%0Aelevator%20=%20current%20(vz_control,%20(%3F%20%25%204))%20%2FCoB%20@%201;%0Alatency%20exists%20%3C=%202

Chains of constraints

latency forward/backward ≤ B (. . . ,w , r , . . .)

For each link w
s,c−−→ r ,

0 ≤ i.r < hp/period(r)

0 ≤ latw ,r < L for c = f
0 < latw ,r ≤ L for c = b

{
where L = period(r) if forward

and L = period(w) if backward

0 ≤ wrapw ,r ≤ 1
if forward and s ̸∈ {Dw, ∗n}
or if backward and s ̸∈ {Dw, /n}

period(w) · i.w + p.w + latw ,r − hp · wrapw ,r = period(r) · i.r + p.r .

• Each intermediate instance is both a reader
and a writer, and thus constrained by two
equations.

• forward: attach chains from the top

• backward: attach chains to the bottom

10 / 17

Chains of constraints

latency forward/backward ≤ B (. . . ,w , r , . . .)

For each link w
s,c−−→ r ,

0 ≤ i.r < hp/period(r)

0 ≤ latw ,r < L for c = f
0 < latw ,r ≤ L for c = b

{
where L = period(r) if forward

and L = period(w) if backward

0 ≤ wrapw ,r ≤ 1
if forward and s ̸∈ {Dw, ∗n}
or if backward and s ̸∈ {Dw, /n}

period(w) · i.w + p.w + latw ,r − hp · wrapw ,r = period(r) · i.r + p.r .

• Each intermediate instance is both a reader
and a writer, and thus constrained by two
equations.

• forward: attach chains from the top

• backward: attach chains to the bottom

10 / 17

Chains of constraints

latency forward/backward ≤ B (. . . ,w , r , . . .)

For each link w
s,c−−→ r ,

0 ≤ i.r < hp/period(r)

0 ≤ latw ,r < L for c = f
0 < latw ,r ≤ L for c = b

{
where L = period(r) if forward

and L = period(w) if backward

0 ≤ wrapw ,r ≤ 1
if forward and s ̸∈ {Dw, ∗n}
or if backward and s ̸∈ {Dw, /n}

period(w) · i.w + p.w + latw ,r − hp · wrapw ,r = period(r) · i.r + p.r .

• Each intermediate instance is both a reader
and a writer, and thus constrained by two
equations.

• forward: attach chains from the top

• backward: attach chains to the bottom
10 / 17

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation 7→ phase

2. Compile to a sequential task (or parallelize each phase
[

Carle, Potop-Butucaru, Sorel, and Lesens (2015):
From Dataflow Specification to Multiprocessor Par-
titioned Time-Triggered Real-Time Implementation

]
)

Why not?. . .

1. Generate ILP: equation 7→ (thread, phase)
2. Compile to two (or more) sequential tasks

. . . because. . .
• the number of constraints explodes and the

ILP solver may not be able to find a solution?

• delayed communications may accumulate
and increase end-to-end latency?

. . . Try anyway!
• We’ve got a big hammer, why not use it?

• Maybe it works for our applications

• The problem is interesting

• Still need to compare to list scheduling

11 / 17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation 7→ phase

2. Compile to a sequential task (or parallelize each phase
[

Carle, Potop-Butucaru, Sorel, and Lesens (2015):
From Dataflow Specification to Multiprocessor Par-
titioned Time-Triggered Real-Time Implementation

]
)

Why not?. . .

1. Generate ILP: equation 7→ (thread, phase)
2. Compile to two (or more) sequential tasks

. . . because. . .
• the number of constraints explodes and the

ILP solver may not be able to find a solution?

• delayed communications may accumulate
and increase end-to-end latency?

. . . Try anyway!
• We’ve got a big hammer, why not use it?

• Maybe it works for our applications

• The problem is interesting

• Still need to compare to list scheduling

11 / 17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation 7→ phase

2. Compile to a sequential task (or parallelize each phase
[

Carle, Potop-Butucaru, Sorel, and Lesens (2015):
From Dataflow Specification to Multiprocessor Par-
titioned Time-Triggered Real-Time Implementation

]
)

Why not?. . .

1. Generate ILP: equation 7→ (thread, phase)
2. Compile to two (or more) sequential tasks

. . . because. . .
• the number of constraints explodes and the

ILP solver may not be able to find a solution?

• delayed communications may accumulate
and increase end-to-end latency?

. . . Try anyway!
• We’ve got a big hammer, why not use it?

• Maybe it works for our applications

• The problem is interesting

• Still need to compare to list scheduling

11 / 17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

WiP: multi-task scheduling

Current Approach

1. Generate ILP: equation 7→ phase

2. Compile to a sequential task (or parallelize each phase
[

Carle, Potop-Butucaru, Sorel, and Lesens (2015):
From Dataflow Specification to Multiprocessor Par-
titioned Time-Triggered Real-Time Implementation

]
)

Why not?. . .

1. Generate ILP: equation 7→ (thread, phase)
2. Compile to two (or more) sequential tasks

. . . because. . .
• the number of constraints explodes and the

ILP solver may not be able to find a solution?

• delayed communications may accumulate
and increase end-to-end latency?

. . . Try anyway!
• We’ve got a big hammer, why not use it?

• Maybe it works for our applications

• The problem is interesting

• Still need to compare to list scheduling

11 / 17

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001

Threads and phases

Source program: w = e; r = f(w);

(tw ̸= tr) ∧ (pw = pr): extra synchronization required

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; sem_post(wok); } if (c % 2) == 0) { sem_wait(wok); r = f(w); }
· · · · · ·

(pw ̸= pr): no race condition due to global synchronization

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; } if (c % 2) == 1) { r = f(w); }
· · · · · ·

require: tw = tr ∨ pw ̸= pr “same thread or different phase”

12 / 17

Threads and phases

Source program: w = e; r = f(w);

(tw ̸= tr) ∧ (pw = pr): extra synchronization required

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; sem_post(wok); } if (c % 2) == 0) { sem_wait(wok); r = f(w); }
· · · · · ·

(pw ̸= pr): no race condition due to global synchronization

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; } if (c % 2) == 1) { r = f(w); }
· · · · · ·

require: tw = tr ∨ pw ̸= pr “same thread or different phase”

12 / 17

Threads and phases

Source program: w = e; r = f(w);

(tw ̸= tr) ∧ (pw = pr): extra synchronization required

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; sem_post(wok); } if (c % 2) == 0) { sem_wait(wok); r = f(w); }
· · · · · ·

(pw ̸= pr): no race condition due to global synchronization

thread 1 thread 2
· · · · · ·

if (c % 2 == 0) { w = e; } if (c % 2) == 1) { r = f(w); }
· · · · · ·

require: tw = tr ∨ pw ̸= pr “same thread or different phase”
12 / 17

Preliminary Experiments on largest Airbus case-study

• Oct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

• Nov. 2024: It works a little bit

» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after ≈35 hours

• Mar. 2025: “Boolean” encoding for
same-thread or different-phase

» cplex: 2 hours

» cp-sat (with L. Sylvestre): 20 minutes

• Ongoing: Pure SAT encoding (with
L. Sylvestre)

» Translate pseudo-boolean constraints following
Eén and Sörensso (suggested by K. Claessen
and M. Sheeran)

» Re-encode end-to-end latency constraints

13 / 17

Preliminary Experiments on largest Airbus case-study

• Oct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

• Nov. 2024: It works a little bit

» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after ≈35 hours

• Mar. 2025: “Boolean” encoding for
same-thread or different-phase

» cplex: 2 hours

» cp-sat (with L. Sylvestre): 20 minutes

• Ongoing: Pure SAT encoding (with
L. Sylvestre)

» Translate pseudo-boolean constraints following
Eén and Sörensso (suggested by K. Claessen
and M. Sheeran)

» Re-encode end-to-end latency constraints

13 / 17

Preliminary Experiments on largest Airbus case-study

• Oct. 2024: It does not work

» cplex: runs for days until out-of-memory

» set mip strategy file 3: runs for longer
until dying

• Nov. 2024: It works a little bit

» Schedule on one thread and generate a MIP
start file

» Scheduling on two cores then starts from a
valid solution, which the optimizer can
iteratively improve.

» Solution after ≈35 hours

• Mar. 2025: “Boolean” encoding for
same-thread or different-phase

» cplex: 2 hours

» cp-sat (with L. Sylvestre): 20 minutes

• Ongoing: Pure SAT encoding (with
L. Sylvestre)

» Translate pseudo-boolean constraints following
Eén and Sörensso (suggested by K. Claessen
and M. Sheeran)

» Re-encode end-to-end latency constraints

13 / 17

Minimize rmax.threadandcycle.ops
Subject to
tpw.def1.az_f: -1 p.az_f + 1 tw.0.pw.1.az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_f

+ 1 tw.1.pw.1.az_f + 2 tw.1.pw.2.az_f + 3 tw.1.pw.3.az_f = 0

tpw.def0.az_f: tw.0.pw.0.az_f + tw.0.pw.1.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
+ tw.1.pw.0.az_f + tw.1.pw.1.az_f + tw.1.pw.2.az_f + tw.1.pw.3.az_f = 1 ...

threads.tw.0.pw.1.dyn.az_f: tw.0.pw.1.dyn + tw.1.pw.1.az_f + tw.1.pw.3.az_f <= 1
threads.tw.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1.pw.0.az_f + tw.1.pw.2.az_f <= 1

threads.tw.1.pw.1.dyn.az_f: tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f <= 1
threads.tw.1.pw.0.dyn.az_f: tw.1.pw.0.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <= 1 ...

rsum.tw.1.pw.7.ops: rsum.tw.1.pw.7.ops - 37 tw.1.pw.3.vz_f - 88 tw.1.pw.7.vz_c
- 38 tw.1.pw.3.va_f - 90 tw.1.pw.7.va_c - 37 tw.1.pw.3.q_f
- 38 tw.1.pw.3.h_f - 82 tw.1.pw.1.eng - 98 tw.1.pw.1.ele
- 1174 tw.1.pw.1.dyn - 37 tw.1.pw.3.az_f - 201 tw.1.pw.7.alt_h = 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f ... rsum.tw.0.pw.0.ops ... rsum.tw.1.pw.7.ops rmax.threadandcycle.ops ...

Binary
tw.0.pw.0.az_f tw.0.pw.1.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f
tw.1.pw.0.az_f tw.1.pw.1.az_f tw.1.pw.2.az_f tw.1.pw.3.az_f ...

End 14 / 17

Minimize rmax.threadandcycle.ops
Subject to
tpw.def1.az_f: -1 p.az_f + 1 tw.0.pw.1.az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_f

+ 1 tw.1.pw.1.az_f + 2 tw.1.pw.2.az_f + 3 tw.1.pw.3.az_f = 0

tpw.def0.az_f: tw.0.pw.0.az_f + tw.0.pw.1.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
+ tw.1.pw.0.az_f + tw.1.pw.1.az_f + tw.1.pw.2.az_f + tw.1.pw.3.az_f = 1 ...

threads.tw.0.pw.1.dyn.az_f: tw.0.pw.1.dyn + tw.1.pw.1.az_f + tw.1.pw.3.az_f <= 1
threads.tw.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1.pw.0.az_f + tw.1.pw.2.az_f <= 1

threads.tw.1.pw.1.dyn.az_f: tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f <= 1
threads.tw.1.pw.0.dyn.az_f: tw.1.pw.0.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <= 1 ...

rsum.tw.1.pw.7.ops: rsum.tw.1.pw.7.ops - 37 tw.1.pw.3.vz_f - 88 tw.1.pw.7.vz_c
- 38 tw.1.pw.3.va_f - 90 tw.1.pw.7.va_c - 37 tw.1.pw.3.q_f
- 38 tw.1.pw.3.h_f - 82 tw.1.pw.1.eng - 98 tw.1.pw.1.ele
- 1174 tw.1.pw.1.dyn - 37 tw.1.pw.3.az_f - 201 tw.1.pw.7.alt_h = 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f ... rsum.tw.0.pw.0.ops ... rsum.tw.1.pw.7.ops rmax.threadandcycle.ops ...

Binary
tw.0.pw.0.az_f tw.0.pw.1.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f
tw.1.pw.0.az_f tw.1.pw.1.az_f tw.1.pw.2.az_f tw.1.pw.3.az_f ...

End 14 / 17

Minimize rmax.threadandcycle.ops
Subject to
tpw.def1.az_f: -1 p.az_f + 1 tw.0.pw.1.az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_f

+ 1 tw.1.pw.1.az_f + 2 tw.1.pw.2.az_f + 3 tw.1.pw.3.az_f = 0

tpw.def0.az_f: tw.0.pw.0.az_f + tw.0.pw.1.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
+ tw.1.pw.0.az_f + tw.1.pw.1.az_f + tw.1.pw.2.az_f + tw.1.pw.3.az_f = 1 ...

threads.tw.0.pw.1.dyn.az_f: tw.0.pw.1.dyn + tw.1.pw.1.az_f + tw.1.pw.3.az_f <= 1
threads.tw.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1.pw.0.az_f + tw.1.pw.2.az_f <= 1

threads.tw.1.pw.1.dyn.az_f: tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f <= 1
threads.tw.1.pw.0.dyn.az_f: tw.1.pw.0.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <= 1 ...

rsum.tw.1.pw.7.ops: rsum.tw.1.pw.7.ops - 37 tw.1.pw.3.vz_f - 88 tw.1.pw.7.vz_c
- 38 tw.1.pw.3.va_f - 90 tw.1.pw.7.va_c - 37 tw.1.pw.3.q_f
- 38 tw.1.pw.3.h_f - 82 tw.1.pw.1.eng - 98 tw.1.pw.1.ele
- 1174 tw.1.pw.1.dyn - 37 tw.1.pw.3.az_f - 201 tw.1.pw.7.alt_h = 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f ... rsum.tw.0.pw.0.ops ... rsum.tw.1.pw.7.ops rmax.threadandcycle.ops ...

Binary
tw.0.pw.0.az_f tw.0.pw.1.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f
tw.1.pw.0.az_f tw.1.pw.1.az_f tw.1.pw.2.az_f tw.1.pw.3.az_f ...

End

(va, az, q, vz, h) = dynamics(th, d_e);
az_f = az_filter(az when (? % 2));

14 / 17

Minimize rmax.threadandcycle.ops
Subject to
tpw.def1.az_f: -1 p.az_f + 1 tw.0.pw.1.az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_f

+ 1 tw.1.pw.1.az_f + 2 tw.1.pw.2.az_f + 3 tw.1.pw.3.az_f = 0

tpw.def0.az_f: tw.0.pw.0.az_f + tw.0.pw.1.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
+ tw.1.pw.0.az_f + tw.1.pw.1.az_f + tw.1.pw.2.az_f + tw.1.pw.3.az_f = 1 ...

threads.tw.0.pw.1.dyn.az_f: tw.0.pw.1.dyn + tw.1.pw.1.az_f + tw.1.pw.3.az_f <= 1
threads.tw.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1.pw.0.az_f + tw.1.pw.2.az_f <= 1

threads.tw.1.pw.1.dyn.az_f: tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f <= 1
threads.tw.1.pw.0.dyn.az_f: tw.1.pw.0.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <= 1 ...

rsum.tw.1.pw.7.ops: rsum.tw.1.pw.7.ops - 37 tw.1.pw.3.vz_f - 88 tw.1.pw.7.vz_c
- 38 tw.1.pw.3.va_f - 90 tw.1.pw.7.va_c - 37 tw.1.pw.3.q_f
- 38 tw.1.pw.3.h_f - 82 tw.1.pw.1.eng - 98 tw.1.pw.1.ele
- 1174 tw.1.pw.1.dyn - 37 tw.1.pw.3.az_f - 201 tw.1.pw.7.alt_h = 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f ... rsum.tw.0.pw.0.ops ... rsum.tw.1.pw.7.ops rmax.threadandcycle.ops ...

Binary
tw.0.pw.0.az_f tw.0.pw.1.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f
tw.1.pw.0.az_f tw.1.pw.1.az_f tw.1.pw.2.az_f tw.1.pw.3.az_f ...

End

node az_filter (az : float) returns (az_f : float)
requires (ops = 37);

14 / 17

Minimize rmax.threadandcycle.ops
Subject to
tpw.def1.az_f: -1 p.az_f + 1 tw.0.pw.1.az_f + 2 tw.0.pw.2.az_f + 3 tw.0.pw.3.az_f

+ 1 tw.1.pw.1.az_f + 2 tw.1.pw.2.az_f + 3 tw.1.pw.3.az_f = 0

tpw.def0.az_f: tw.0.pw.0.az_f + tw.0.pw.1.az_f + tw.0.pw.2.az_f + tw.0.pw.3.az_f
+ tw.1.pw.0.az_f + tw.1.pw.1.az_f + tw.1.pw.2.az_f + tw.1.pw.3.az_f = 1 ...

threads.tw.0.pw.1.dyn.az_f: tw.0.pw.1.dyn + tw.1.pw.1.az_f + tw.1.pw.3.az_f <= 1
threads.tw.0.pw.0.dyn.az_f: tw.0.pw.0.dyn + tw.1.pw.0.az_f + tw.1.pw.2.az_f <= 1

threads.tw.1.pw.1.dyn.az_f: tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f <= 1
threads.tw.1.pw.0.dyn.az_f: tw.1.pw.0.dyn + tw.0.pw.0.az_f + tw.0.pw.2.az_f <= 1 ...

rsum.tw.1.pw.7.ops: rsum.tw.1.pw.7.ops - 37 tw.1.pw.3.vz_f - 88 tw.1.pw.7.vz_c
- 38 tw.1.pw.3.va_f - 90 tw.1.pw.7.va_c - 37 tw.1.pw.3.q_f
- 38 tw.1.pw.3.h_f - 82 tw.1.pw.1.eng - 98 tw.1.pw.1.ele
- 1174 tw.1.pw.1.dyn - 37 tw.1.pw.3.az_f - 201 tw.1.pw.7.alt_h = 0 ...

Bounds
0 <= p.az_f <= 3 ...

General
p.az_f ... rsum.tw.0.pw.0.ops ... rsum.tw.1.pw.7.ops rmax.threadandcycle.ops ...

Binary
tw.0.pw.0.az_f tw.0.pw.1.az_f tw.0.pw.2.az_f tw.0.pw.3.az_f
tw.1.pw.0.az_f tw.1.pw.1.az_f tw.1.pw.2.az_f tw.1.pw.3.az_f ...

End 14 / 17

Preliminary Results on the ≈5000 function example

• cplex runs for days until an out-of-memory error

» Schedule with –nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with –nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over ≈1 hour.

• With L. Sylvestre, we added new back-ends

» cp-sat, translate .lp: ≈15 minutes (3 threads: ≈8 hours)

» cp-sat, all booleans: ≈25 minutes

» Z3 (single core): fails (so far)

» minisat+to expand the pseudo-boolean constraints: fails (so far)

• What about --nthreads 4? Or a bigger application?

• More tricks needed (schedule for 2, then reschedule for 4, etc.) or completely doomed?

15 / 17

Preliminary Results on the ≈5000 function example

• cplex runs for days until an out-of-memory error

» Schedule with –nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with –nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over ≈1 hour.

• With L. Sylvestre, we added new back-ends

» cp-sat, translate .lp: ≈15 minutes (3 threads: ≈8 hours)

» cp-sat, all booleans: ≈25 minutes

» Z3 (single core): fails (so far)

» minisat+to expand the pseudo-boolean constraints: fails (so far)

• What about --nthreads 4? Or a bigger application?

• More tricks needed (schedule for 2, then reschedule for 4, etc.) or completely doomed?

15 / 17

Preliminary Results on the ≈5000 function example

• cplex runs for days until an out-of-memory error

» Schedule with –nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with –nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over ≈1 hour.

• With L. Sylvestre, we added new back-ends

» cp-sat, translate .lp: ≈15 minutes (3 threads: ≈8 hours)

» cp-sat, all booleans: ≈25 minutes

» Z3 (single core): fails (so far)

» minisat+to expand the pseudo-boolean constraints: fails (so far)

• What about --nthreads 4? Or a bigger application?

• More tricks needed (schedule for 2, then reschedule for 4, etc.) or completely doomed?

15 / 17

Preliminary Results on the ≈5000 function example

• cplex runs for days until an out-of-memory error

» Schedule with –nthreads 1 and generate a MIP start file (.mst)

» Rescheduling with –nthreads 2 then starts from a valid solution,
which the optimizer iteratively improves over ≈1 hour.

• With L. Sylvestre, we added new back-ends

» cp-sat, translate .lp: ≈15 minutes (3 threads: ≈8 hours)

» cp-sat, all booleans: ≈25 minutes

» Z3 (single core): fails (so far)

» minisat+to expand the pseudo-boolean constraints: fails (so far)

• What about --nthreads 4? Or a bigger application?

• More tricks needed (schedule for 2, then reschedule for 4, etc.) or completely doomed?
15 / 17

Same thread or different phase: what about fast functions?

• For functions at rate 1/n when 1 < n, the tw = tr ∨ pw ̸= pr rule works well enough

• But what about for n = 1?

• Simple solution: multiply all rates by 2, giving 1/2n

» Each cycle, every thread executes: step(); barrier(); step()

» Breaks the --fast-first rule (faster functions before slower ones)

• Another solution: add the barrier within step()

» Schedule n = 1 functions ante-barrier or post-barrier

» New rule: tw = tr ∨ (if n > 1 then pw ̸= pr else bw ̸= br)

» Even more variables and constraints

» Need to balance resources used in ante-barrier and in the whole cycle

16 / 17

Same thread or different phase: what about fast functions?

• For functions at rate 1/n when 1 < n, the tw = tr ∨ pw ̸= pr rule works well enough

• But what about for n = 1?

• Simple solution: multiply all rates by 2, giving 1/2n

» Each cycle, every thread executes: step(); barrier(); step()

» Breaks the --fast-first rule (faster functions before slower ones)

• Another solution: add the barrier within step()

» Schedule n = 1 functions ante-barrier or post-barrier

» New rule: tw = tr ∨ (if n > 1 then pw ̸= pr else bw ̸= br)

» Even more variables and constraints

» Need to balance resources used in ante-barrier and in the whole cycle

16 / 17

Same thread or different phase: what about fast functions?

• For functions at rate 1/n when 1 < n, the tw = tr ∨ pw ̸= pr rule works well enough

• But what about for n = 1?

• Simple solution: multiply all rates by 2, giving 1/2n

» Each cycle, every thread executes: step(); barrier(); step()

» Breaks the --fast-first rule (faster functions before slower ones)

• Another solution: add the barrier within step()

» Schedule n = 1 functions ante-barrier or post-barrier

» New rule: tw = tr ∨ (if n > 1 then pw ̸= pr else bw ̸= br)

» Even more variables and constraints

» Need to balance resources used in ante-barrier and in the whole cycle

16 / 17

Ongoing work

• Still refining the SAT backend

» boolean encoding of end-to-end latency

» treatment of pseudo-boolean constraints for resource balancing

• Difference between WCET used for balancing and WCET of generated code

• Need robust measures for case-studies and more benchmarks

• Use a real-time scheduling algorithm to find a solution or an initial solution?

17 / 17

References I

• Carle, T., D. Potop-Butucaru, Y. Sorel, and D. Lesens (Nov. 2015). “From Dataflow Specification to
Multiprocessor Partitioned Time-Triggered Real-Time Implementation”. In: Leibniz Trans. Embedded
Systems (LITES) 2.2, 01:1–01:30.

• Forget, J., F. Boniol, D. Lesens, and C. Pagetti (Mar. 2010). “A Real-Time Architecture Design Language
for Multi-Rate Embedded Control Systems”. In: Proc. 25th ACM Symp. Applied Computing (SAC’10).
Ed. by S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung. Sierre, Switzerland: ACM,
pp. 527–534.

• Pagetti, C., D. Saussié, R. Gratia, E. Noulard, and P. Siron (Apr. 2014). “The ROSACE Case Study: From
Simulink Specification to Multi/Many-Core Execution”. In: 20th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2014). IEEE. Berlin, Germany, pp. 309–318.

I

http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.4230/LITES-v002-i002-a001
http://dx.doi.org/10.1145/1774088.1774196
http://dx.doi.org/10.1145/1774088.1774196
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf
http://oatao.univ-toulouse.fr/11522/1/Siron_11522.pdf

Tricks that do not seem to help: 1/2

Minimize Races
• Rather than prohibit different-thread/same-phase communications, try to minimize them.

• For each writer-reader: add a binary variable sync.dyn.az_f

• Include it in the previous constraints:
tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f - sync.dyn.az_f <= 1

• Add an additional objective to minimize the sum of such variables

• Results: load balances quite quickly (objective 1),
then very, very slowly converges on eliminating races (objective 2).

• Requires adding synchronizations within a phase.

II

Tricks that do not seem to help: 1/2

Minimize Races
• Rather than prohibit different-thread/same-phase communications, try to minimize them.

• For each writer-reader: add a binary variable sync.dyn.az_f

• Include it in the previous constraints:
tw.1.pw.1.dyn + tw.0.pw.1.az_f + tw.0.pw.3.az_f - sync.dyn.az_f <= 1

• Add an additional objective to minimize the sum of such variables

• Results: load balances quite quickly (objective 1),
then very, very slowly converges on eliminating races (objective 2).

• Requires adding synchronizations within a phase.

II

Tricks that do not seem to help: 2/2

Clustering prior to ILP
• Many partitions: does not seem very effective

• Few partitions: precludes finding a valid schedule

» E.g., with four partitions, we can rapidly test all combinations for feasability: 1100, 0110, 1010

• Try tweaking the heuristic?

• Cluster in a different way?

• Try cplex conflict analysis features?

III

Tricks that do not seem to help: 2/2

Clustering prior to ILP
• Many partitions: does not seem very effective

• Few partitions: precludes finding a valid schedule

» E.g., with four partitions, we can rapidly test all combinations for feasability: 1100, 0110, 1010

• Try tweaking the heuristic?

• Cluster in a different way?

• Try cplex conflict analysis features?

III

	Title slide
	Language and Approach
	Airbus project ``All-in-Lustre''
	Source Language: Rate-Synchronous Lustre
	The ROSACE Case Study
	Compilation: Model Schedule Code / Concomitance
	Overview: compilation using external solvers

	End-to-End Latency
	Constraining End-to-end Latency
	Constraining End-to-end Latency
	Chains of constraints

	Multi-task Scheduling
	WiP: multi-task scheduling
	Threads and phases
	Preliminary Experiments on largest Airbus case-study
	Preliminary Results on the 5000 function example
	Same thread or different phase: what about fast functions?
	Ongoing work

	Appendix
	References
	Tricks that do not seem to help: 1/2
	Tricks that do not seem to help: 2/2

